{"title":"一种构造旋转不变MTCM的统一方法","authors":"P. Bobrek, V. Jain","doi":"10.1109/ISIT.1994.395059","DOIUrl":null,"url":null,"abstract":"Using the results of Forney's (1988) squaring construction, this paper integrates the rotationally invariant multidimensional trellis coded modulation (MTCM) construction schemes of Wei (1987) and Pietrobon (IEEE Trans. Info. Theory, vol.IT-39, no.3, p. 325-336, 1993), et al. into a highly efficient construction procedure. This procedure can be used to construct QAM or MPSK based MTCM schemes. This paper demonstrates that the squaring construction allows us to deduce the coset representatives of a multidimensional constellation directly from a 2-D partition. A method is given for generating and ordering the coset representatives for rotationally invariant MTCM schemes.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A unified approach for construction of rotationally invariant MTCM\",\"authors\":\"P. Bobrek, V. Jain\",\"doi\":\"10.1109/ISIT.1994.395059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the results of Forney's (1988) squaring construction, this paper integrates the rotationally invariant multidimensional trellis coded modulation (MTCM) construction schemes of Wei (1987) and Pietrobon (IEEE Trans. Info. Theory, vol.IT-39, no.3, p. 325-336, 1993), et al. into a highly efficient construction procedure. This procedure can be used to construct QAM or MPSK based MTCM schemes. This paper demonstrates that the squaring construction allows us to deduce the coset representatives of a multidimensional constellation directly from a 2-D partition. A method is given for generating and ordering the coset representatives for rotationally invariant MTCM schemes.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.395059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文利用Forney(1988)的平方构造结果,综合了Wei(1987)和Pietrobon (IEEE Trans. cn)的旋转不变多维网格编码调制(MTCM)构造方案。信息。理论,vol. it . 39, no。3, p. 325-336, 1993),等人进入一个高效的施工程序。此程序可用于构建基于QAM或MPSK的MTCM方案。本文证明了平方构造允许我们直接从二维划分中推导出多维星座的协集表示。给出了旋转不变MTCM格式的协集表示的生成和排序方法
A unified approach for construction of rotationally invariant MTCM
Using the results of Forney's (1988) squaring construction, this paper integrates the rotationally invariant multidimensional trellis coded modulation (MTCM) construction schemes of Wei (1987) and Pietrobon (IEEE Trans. Info. Theory, vol.IT-39, no.3, p. 325-336, 1993), et al. into a highly efficient construction procedure. This procedure can be used to construct QAM or MPSK based MTCM schemes. This paper demonstrates that the squaring construction allows us to deduce the coset representatives of a multidimensional constellation directly from a 2-D partition. A method is given for generating and ordering the coset representatives for rotationally invariant MTCM schemes.<>