基于商用毫米波雷达的人体姿态估计新网络

Qing Wang, Kai Wang, Wai Chen
{"title":"基于商用毫米波雷达的人体姿态估计新网络","authors":"Qing Wang, Kai Wang, Wai Chen","doi":"10.1145/3446132.3446421","DOIUrl":null,"url":null,"abstract":"This paper introduces a new network (CLGNet: Combined Local and Global information encoding Network) for human pose estimation based on commodity millimeter wave (mmWave) radar. Based on the benchmark model of ResNet, a global spatial information encoding module is introduced at the early stage of the network. This new module is expected to help learning the relationship between sparsely distributed human pose keypoints with internal relations. Our experimental results show that the addition of this structural module improves the prediction accuracy of human pose keypoints, especially on minor body parts, such as hands and feet.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CLGNet: A New Network for Human Pose Estimation using Commodity Millimeter Wave Radar\",\"authors\":\"Qing Wang, Kai Wang, Wai Chen\",\"doi\":\"10.1145/3446132.3446421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new network (CLGNet: Combined Local and Global information encoding Network) for human pose estimation based on commodity millimeter wave (mmWave) radar. Based on the benchmark model of ResNet, a global spatial information encoding module is introduced at the early stage of the network. This new module is expected to help learning the relationship between sparsely distributed human pose keypoints with internal relations. Our experimental results show that the addition of this structural module improves the prediction accuracy of human pose keypoints, especially on minor body parts, such as hands and feet.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于商用毫米波雷达的人体姿态估计新网络(CLGNet: Combined Local and Global information encoding network)。在ResNet基准模型的基础上,在网络前期引入了全局空间信息编码模块。这个新模块有望帮助学习稀疏分布的人体姿势关键点与内部关系之间的关系。我们的实验结果表明,该结构模块的加入提高了人体姿势关键点的预测精度,特别是对身体的次要部位,如手和脚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLGNet: A New Network for Human Pose Estimation using Commodity Millimeter Wave Radar
This paper introduces a new network (CLGNet: Combined Local and Global information encoding Network) for human pose estimation based on commodity millimeter wave (mmWave) radar. Based on the benchmark model of ResNet, a global spatial information encoding module is introduced at the early stage of the network. This new module is expected to help learning the relationship between sparsely distributed human pose keypoints with internal relations. Our experimental results show that the addition of this structural module improves the prediction accuracy of human pose keypoints, especially on minor body parts, such as hands and feet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信