基于高阶局部自相关系数的模式识别

Vlad Popovici, J. Thiran
{"title":"基于高阶局部自相关系数的模式识别","authors":"Vlad Popovici, J. Thiran","doi":"10.1109/NNSP.2002.1030034","DOIUrl":null,"url":null,"abstract":"The autocorrelations have been previously used as features for 1D or 2D signal classification in a wide range of applications, like texture classification, face detection and recognition, EEG signal classification, and so on. However, in almost all the cases, the high computational costs have hampered the extension to higher orders (more than the second order). We present a method which avoids the computation of the autocorrelation coefficients and which can be applied to a large set of tools commonly used in statistical pattern recognition. We discuss different scenarios of using the autocorrelations and we show that the order of autocorrelations is no longer an obstacle.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Pattern recognition using higher-order local autocorrelation coefficients\",\"authors\":\"Vlad Popovici, J. Thiran\",\"doi\":\"10.1109/NNSP.2002.1030034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autocorrelations have been previously used as features for 1D or 2D signal classification in a wide range of applications, like texture classification, face detection and recognition, EEG signal classification, and so on. However, in almost all the cases, the high computational costs have hampered the extension to higher orders (more than the second order). We present a method which avoids the computation of the autocorrelation coefficients and which can be applied to a large set of tools commonly used in statistical pattern recognition. We discuss different scenarios of using the autocorrelations and we show that the order of autocorrelations is no longer an obstacle.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

自相关已经作为一维或二维信号分类的特征被广泛应用,如纹理分类、人脸检测与识别、脑电信号分类等。然而,在几乎所有情况下,高昂的计算成本阻碍了向更高阶(超过二阶)的扩展。我们提出了一种避免计算自相关系数的方法,该方法可以应用于统计模式识别中常用的大量工具。我们讨论了使用自相关的不同场景,并表明自相关的顺序不再是一个障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition using higher-order local autocorrelation coefficients
The autocorrelations have been previously used as features for 1D or 2D signal classification in a wide range of applications, like texture classification, face detection and recognition, EEG signal classification, and so on. However, in almost all the cases, the high computational costs have hampered the extension to higher orders (more than the second order). We present a method which avoids the computation of the autocorrelation coefficients and which can be applied to a large set of tools commonly used in statistical pattern recognition. We discuss different scenarios of using the autocorrelations and we show that the order of autocorrelations is no longer an obstacle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信