cnn池化层实现对fpga加速器设计的影响

A. Muñío-Gracia, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez
{"title":"cnn池化层实现对fpga加速器设计的影响","authors":"A. Muñío-Gracia, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez","doi":"10.1145/3349801.3357130","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks have demonstrated their competence in extracting information from data, especially in the field of computer vision. Their computational complexity prompts for hardware acceleration. The challenge in the design of hardware accelerators for CNNs is providing a sustained throughput with low power consumption, for what FPGAs have captured community attention. In CNNs pooling layers are introduced to reduce model spatial dimensions. This work explores the influence of pooling layers modification in some state-of-the-art CNNs, namely AlexNet and SqueezeNet. The objective is to optimize hardware resources utilization without negative impact on inference accuracy.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of CNNs Pooling Layer Implementation on FPGAs Accelerator Design\",\"authors\":\"A. Muñío-Gracia, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez\",\"doi\":\"10.1145/3349801.3357130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks have demonstrated their competence in extracting information from data, especially in the field of computer vision. Their computational complexity prompts for hardware acceleration. The challenge in the design of hardware accelerators for CNNs is providing a sustained throughput with low power consumption, for what FPGAs have captured community attention. In CNNs pooling layers are introduced to reduce model spatial dimensions. This work explores the influence of pooling layers modification in some state-of-the-art CNNs, namely AlexNet and SqueezeNet. The objective is to optimize hardware resources utilization without negative impact on inference accuracy.\",\"PeriodicalId\":299138,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349801.3357130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3357130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络已经证明了其从数据中提取信息的能力,特别是在计算机视觉领域。它们的计算复杂性促使硬件加速。为cnn设计硬件加速器的挑战是在低功耗的情况下提供持续的吞吐量,fpga已经引起了社区的关注。在cnn中,引入池化层来降低模型的空间维度。这项工作探讨了池化层修改对一些最先进的cnn(即AlexNet和SqueezeNet)的影响。目标是在不影响推理精度的情况下优化硬件资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of CNNs Pooling Layer Implementation on FPGAs Accelerator Design
Convolutional Neural Networks have demonstrated their competence in extracting information from data, especially in the field of computer vision. Their computational complexity prompts for hardware acceleration. The challenge in the design of hardware accelerators for CNNs is providing a sustained throughput with low power consumption, for what FPGAs have captured community attention. In CNNs pooling layers are introduced to reduce model spatial dimensions. This work explores the influence of pooling layers modification in some state-of-the-art CNNs, namely AlexNet and SqueezeNet. The objective is to optimize hardware resources utilization without negative impact on inference accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信