时域和频域元音特征提取的比较

Risanuri Hidayat, Deni Yulian, Agus Bejo, Sujoko Sumaryono
{"title":"时域和频域元音特征提取的比较","authors":"Risanuri Hidayat, Deni Yulian, Agus Bejo, Sujoko Sumaryono","doi":"10.1109/ICITEED.2017.8250477","DOIUrl":null,"url":null,"abstract":"Vowel recognition is the most important part of the speech recognition process. Most spoken speeches must contain vowels to be sounded. It needs a method that can separate a vowel with another. The methods of the feature extraction on time domain, frequency, cepstrum, and fourier are several basic methods that can be used. This paper compares features of the strengths of the feature of zero crossing rate, energy, spectral centroid, spectral spread, spectral entropy, harmonic ratio, fundamental frequency, cepstrum, and fourier to separate and recognize vowels of a, i, u, e, and o in Indonesian dialect/language. The results show that the spectral spread feature that is one of the features in the frequency domain has the most accurate ability to recognize vowels tested compared to other features.","PeriodicalId":267403,"journal":{"name":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of vowel feature extraction on time and frequency domain\",\"authors\":\"Risanuri Hidayat, Deni Yulian, Agus Bejo, Sujoko Sumaryono\",\"doi\":\"10.1109/ICITEED.2017.8250477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vowel recognition is the most important part of the speech recognition process. Most spoken speeches must contain vowels to be sounded. It needs a method that can separate a vowel with another. The methods of the feature extraction on time domain, frequency, cepstrum, and fourier are several basic methods that can be used. This paper compares features of the strengths of the feature of zero crossing rate, energy, spectral centroid, spectral spread, spectral entropy, harmonic ratio, fundamental frequency, cepstrum, and fourier to separate and recognize vowels of a, i, u, e, and o in Indonesian dialect/language. The results show that the spectral spread feature that is one of the features in the frequency domain has the most accurate ability to recognize vowels tested compared to other features.\",\"PeriodicalId\":267403,\"journal\":{\"name\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2017.8250477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2017.8250477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

元音识别是语音识别过程中最重要的部分。大多数演讲必须包含元音才能发音。它需要一种能把一个元音和另一个元音分开的方法。时域、频域、倒谱和傅立叶特征提取是常用的几种基本方法。本文比较了印尼方言中a、i、u、e、o元音的过零率、能量、谱质心、谱展、谱熵、谐波比、基频、倒谱和傅立叶特征的强弱特征。结果表明,作为频域特征之一的频谱扩展特征与其他特征相比,具有最准确的元音识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of vowel feature extraction on time and frequency domain
Vowel recognition is the most important part of the speech recognition process. Most spoken speeches must contain vowels to be sounded. It needs a method that can separate a vowel with another. The methods of the feature extraction on time domain, frequency, cepstrum, and fourier are several basic methods that can be used. This paper compares features of the strengths of the feature of zero crossing rate, energy, spectral centroid, spectral spread, spectral entropy, harmonic ratio, fundamental frequency, cepstrum, and fourier to separate and recognize vowels of a, i, u, e, and o in Indonesian dialect/language. The results show that the spectral spread feature that is one of the features in the frequency domain has the most accurate ability to recognize vowels tested compared to other features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信