检验1型和区间2型模糊逻辑系统的连续性

Dongrui Wu, J. Mendel
{"title":"检验1型和区间2型模糊逻辑系统的连续性","authors":"Dongrui Wu, J. Mendel","doi":"10.1109/FUZZY.2010.5584482","DOIUrl":null,"url":null,"abstract":"This paper studies the continuity of the input-output mappings of fuzzy logic systems (FLSs), including both type-1 (T1) and interval type-2 (IT2) FLSs. We show that a T1 FLS being an universal approximator is equivalent to saying that a T1 FLS has a continuous input-output mapping. We also derive the condition under which a T1 FLS is discontinuous. For IT2 FLSs using Karnik-Mendel type-reduction and center-of-sets defuzzification, we derive the conditions under which continuous and discontinuous input-output mappings can be obtained. Our results will be very useful in selecting the parameters of the membership functions to achieve a desired continuity (e.g., for most traditional modeling and control applications) or discontinuity (e.g., for hybrid and switched systems modeling and control).","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Examining the continuity of type-1 and interval type-2 fuzzy logic systems\",\"authors\":\"Dongrui Wu, J. Mendel\",\"doi\":\"10.1109/FUZZY.2010.5584482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the continuity of the input-output mappings of fuzzy logic systems (FLSs), including both type-1 (T1) and interval type-2 (IT2) FLSs. We show that a T1 FLS being an universal approximator is equivalent to saying that a T1 FLS has a continuous input-output mapping. We also derive the condition under which a T1 FLS is discontinuous. For IT2 FLSs using Karnik-Mendel type-reduction and center-of-sets defuzzification, we derive the conditions under which continuous and discontinuous input-output mappings can be obtained. Our results will be very useful in selecting the parameters of the membership functions to achieve a desired continuity (e.g., for most traditional modeling and control applications) or discontinuity (e.g., for hybrid and switched systems modeling and control).\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究模糊逻辑系统(fls)的输入输出映射的连续性,包括1型(T1)模糊逻辑系统和区间2型(IT2)模糊逻辑系统。我们证明了T1 FLS是一个全称逼近器相当于说T1 FLS具有连续的输入-输出映射。我们还推导了T1 FLS不连续的条件。对于IT2 fls,我们利用Karnik-Mendel型约简和集中心去模糊化,得到了连续和不连续输入输出映射的条件。我们的结果将在选择隶属函数的参数以实现所需的连续性(例如,对于大多数传统的建模和控制应用)或不连续(例如,用于混合和切换系统的建模和控制)方面非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining the continuity of type-1 and interval type-2 fuzzy logic systems
This paper studies the continuity of the input-output mappings of fuzzy logic systems (FLSs), including both type-1 (T1) and interval type-2 (IT2) FLSs. We show that a T1 FLS being an universal approximator is equivalent to saying that a T1 FLS has a continuous input-output mapping. We also derive the condition under which a T1 FLS is discontinuous. For IT2 FLSs using Karnik-Mendel type-reduction and center-of-sets defuzzification, we derive the conditions under which continuous and discontinuous input-output mappings can be obtained. Our results will be very useful in selecting the parameters of the membership functions to achieve a desired continuity (e.g., for most traditional modeling and control applications) or discontinuity (e.g., for hybrid and switched systems modeling and control).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信