从计算特性的角度比较BERT和XLNet

Hailong Li, Jaewan Choi, Sunjung Lee, Jung Ho Ahn
{"title":"从计算特性的角度比较BERT和XLNet","authors":"Hailong Li, Jaewan Choi, Sunjung Lee, Jung Ho Ahn","doi":"10.1109/ICEIC49074.2020.9051081","DOIUrl":null,"url":null,"abstract":"Exploiting attention mechanism, Transformer provides superior performance compared to traditional CNN and RNN models on various NLP (Natural Language Processing) tasks. BERT and XLNet are two popular models utilizing Transformer. In this paper, we compare the computational characteristics of the inference of BERT and XLNet using MPRC (Microsoft Research Paraphrase Corpus), one of the popular language understanding benchmarks. Through evaluation, we observe that the both models exhibit similar computational characteristics except the target-position-aware representation and relative position encoding features of XLNet, leading to a better benchmark score at the cost of $\\mathit{1.2}\\times$ arithmetic operations and $\\mathit{1.5}\\times$ execution time on a modern CPU.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing BERT and XLNet from the Perspective of Computational Characteristics\",\"authors\":\"Hailong Li, Jaewan Choi, Sunjung Lee, Jung Ho Ahn\",\"doi\":\"10.1109/ICEIC49074.2020.9051081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting attention mechanism, Transformer provides superior performance compared to traditional CNN and RNN models on various NLP (Natural Language Processing) tasks. BERT and XLNet are two popular models utilizing Transformer. In this paper, we compare the computational characteristics of the inference of BERT and XLNet using MPRC (Microsoft Research Paraphrase Corpus), one of the popular language understanding benchmarks. Through evaluation, we observe that the both models exhibit similar computational characteristics except the target-position-aware representation and relative position encoding features of XLNet, leading to a better benchmark score at the cost of $\\\\mathit{1.2}\\\\times$ arithmetic operations and $\\\\mathit{1.5}\\\\times$ execution time on a modern CPU.\",\"PeriodicalId\":271345,\"journal\":{\"name\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC49074.2020.9051081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用注意机制,Transformer在各种自然语言处理任务上提供了优于传统CNN和RNN模型的性能。BERT和XLNet是两个使用Transformer的流行模型。在本文中,我们使用MPRC (Microsoft Research释义语料库)比较了BERT和XLNet推理的计算特征,MPRC是流行的语言理解基准之一。通过评估,我们观察到除了XLNet的目标位置感知表示和相对位置编码特征之外,这两种模型表现出相似的计算特征,从而在现代CPU上以$\mathit{1.2}\ $算术运算和$\mathit{1.5}\ $执行时间为代价获得更好的基准测试分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing BERT and XLNet from the Perspective of Computational Characteristics
Exploiting attention mechanism, Transformer provides superior performance compared to traditional CNN and RNN models on various NLP (Natural Language Processing) tasks. BERT and XLNet are two popular models utilizing Transformer. In this paper, we compare the computational characteristics of the inference of BERT and XLNet using MPRC (Microsoft Research Paraphrase Corpus), one of the popular language understanding benchmarks. Through evaluation, we observe that the both models exhibit similar computational characteristics except the target-position-aware representation and relative position encoding features of XLNet, leading to a better benchmark score at the cost of $\mathit{1.2}\times$ arithmetic operations and $\mathit{1.5}\times$ execution time on a modern CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信