噪声网络链路预测的鲁棒性分析

Cunchao Zhu, Guangquan Cheng, Yang Ma, Jiuyao Jiang, M. Wang, Tingfei Huang
{"title":"噪声网络链路预测的鲁棒性分析","authors":"Cunchao Zhu, Guangquan Cheng, Yang Ma, Jiuyao Jiang, M. Wang, Tingfei Huang","doi":"10.1145/3446132.3446143","DOIUrl":null,"url":null,"abstract":"Link prediction is an important application in complex networks. It predicts existing but undiscovered associations or possible future relationships in the network. However, networks in real life have much noise. The networks we observe are incomplete or redundant which interfere with the effect of link prediction. This paper summarizes and constructs four kinds of common noises in social networks, then analyzes the robustness of traditional link prediction methods and methods based on network representation under the influence of different kinds and different degrees of noises on multiple social networks. The experimental results confirm that algorithms using local network properties have higher link accuracy, while methods based on the global properties have higher robustness. CCS CONCEPTS • Networks∼Network performance evaluation∼Network performance analysis • Networks∼Network performance evaluation∼Network experimentation • Networks∼Network performance evaluation∼Network performance modeling","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness analysis of noise network link prediction\",\"authors\":\"Cunchao Zhu, Guangquan Cheng, Yang Ma, Jiuyao Jiang, M. Wang, Tingfei Huang\",\"doi\":\"10.1145/3446132.3446143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Link prediction is an important application in complex networks. It predicts existing but undiscovered associations or possible future relationships in the network. However, networks in real life have much noise. The networks we observe are incomplete or redundant which interfere with the effect of link prediction. This paper summarizes and constructs four kinds of common noises in social networks, then analyzes the robustness of traditional link prediction methods and methods based on network representation under the influence of different kinds and different degrees of noises on multiple social networks. The experimental results confirm that algorithms using local network properties have higher link accuracy, while methods based on the global properties have higher robustness. CCS CONCEPTS • Networks∼Network performance evaluation∼Network performance analysis • Networks∼Network performance evaluation∼Network experimentation • Networks∼Network performance evaluation∼Network performance modeling\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

链路预测是复杂网络中的一个重要应用。它预测网络中现有但尚未发现的关联或可能的未来关系。然而,现实生活中的网络有很多噪音。我们观察到的网络是不完整的或冗余的,这干扰了链路预测的效果。本文总结并构建了社交网络中常见的四种噪声,分析了传统的链接预测方法和基于网络表示的方法在多个社交网络中不同种类、不同程度的噪声影响下的鲁棒性。实验结果表明,基于局部网络属性的算法具有更高的链路精度,而基于全局属性的方法具有更高的鲁棒性。CCS概念•网络~网络性能评估~网络性能分析•网络~网络性能评估~网络实验•网络~网络性能评估~网络性能建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness analysis of noise network link prediction
Link prediction is an important application in complex networks. It predicts existing but undiscovered associations or possible future relationships in the network. However, networks in real life have much noise. The networks we observe are incomplete or redundant which interfere with the effect of link prediction. This paper summarizes and constructs four kinds of common noises in social networks, then analyzes the robustness of traditional link prediction methods and methods based on network representation under the influence of different kinds and different degrees of noises on multiple social networks. The experimental results confirm that algorithms using local network properties have higher link accuracy, while methods based on the global properties have higher robustness. CCS CONCEPTS • Networks∼Network performance evaluation∼Network performance analysis • Networks∼Network performance evaluation∼Network experimentation • Networks∼Network performance evaluation∼Network performance modeling
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信