优化的全卷积神经网络编码器在SAR图像中的水检测

Chao Huang Lin, Razvan Andonie, A. Florea
{"title":"优化的全卷积神经网络编码器在SAR图像中的水检测","authors":"Chao Huang Lin, Razvan Andonie, A. Florea","doi":"10.1109/IV56949.2022.00064","DOIUrl":null,"url":null,"abstract":"Visual interpretation of Synthetic Aperture Radar (SAR) images plays an important role in remote sensing mainly because SAR images enable consistent monitoring in any lighting, weather, and cloud-cover conditions. An important application of SAR visualization is water detection. We introduce a Fully Convolutional Neural Network (FCN) Encoder to detect water in Sentinel-1 SAR images. Our FCN Encoder identifies water by the intensity of each pixel and also learns the spatial information of neighborhood pixels. We apply our method on standard benchmarks and real-world SAR images. The results are assessed both visually and from the point of view of classification accuracy. Compared with other classifiers, our FCN Encoder is more accurate. From visual inspection of the Seattle water detection result, the FCN Encoder produces a very clear (smooth) output. The results show that the FCN Encoder, trained with a harder dataset and hyperparameter optimization, improves significantly its generalization performance. In a real-world application, for the prediction phase, the FCN Encoder is about 40 times faster than a Convolutional Neural Network (CNN) with sliding window.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Fully Convolutional Neural Network Encoder for Water Detection in SAR Images\",\"authors\":\"Chao Huang Lin, Razvan Andonie, A. Florea\",\"doi\":\"10.1109/IV56949.2022.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual interpretation of Synthetic Aperture Radar (SAR) images plays an important role in remote sensing mainly because SAR images enable consistent monitoring in any lighting, weather, and cloud-cover conditions. An important application of SAR visualization is water detection. We introduce a Fully Convolutional Neural Network (FCN) Encoder to detect water in Sentinel-1 SAR images. Our FCN Encoder identifies water by the intensity of each pixel and also learns the spatial information of neighborhood pixels. We apply our method on standard benchmarks and real-world SAR images. The results are assessed both visually and from the point of view of classification accuracy. Compared with other classifiers, our FCN Encoder is more accurate. From visual inspection of the Seattle water detection result, the FCN Encoder produces a very clear (smooth) output. The results show that the FCN Encoder, trained with a harder dataset and hyperparameter optimization, improves significantly its generalization performance. In a real-world application, for the prediction phase, the FCN Encoder is about 40 times faster than a Convolutional Neural Network (CNN) with sliding window.\",\"PeriodicalId\":153161,\"journal\":{\"name\":\"2022 26th International Conference Information Visualisation (IV)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV56949.2022.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)图像的目视解译在遥感中起着重要作用,主要是因为SAR图像能够在任何光照、天气和云层条件下进行一致的监测。SAR可视化的一个重要应用是水体探测。我们引入了一个全卷积神经网络(FCN)编码器来检测Sentinel-1 SAR图像中的水。我们的FCN编码器通过每个像素的强度来识别水,并学习邻近像素的空间信息。我们将我们的方法应用于标准基准和真实世界的SAR图像。从视觉和分类精度的角度对结果进行了评估。与其他分类器相比,我们的FCN编码器精度更高。从西雅图水检测结果的目视检查,FCN编码器产生一个非常清晰(平滑)的输出。结果表明,采用硬数据集和超参数优化训练的FCN编码器的泛化性能得到了显著提高。在实际应用中,对于预测阶段,FCN编码器比带滑动窗口的卷积神经网络(CNN)快40倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Fully Convolutional Neural Network Encoder for Water Detection in SAR Images
Visual interpretation of Synthetic Aperture Radar (SAR) images plays an important role in remote sensing mainly because SAR images enable consistent monitoring in any lighting, weather, and cloud-cover conditions. An important application of SAR visualization is water detection. We introduce a Fully Convolutional Neural Network (FCN) Encoder to detect water in Sentinel-1 SAR images. Our FCN Encoder identifies water by the intensity of each pixel and also learns the spatial information of neighborhood pixels. We apply our method on standard benchmarks and real-world SAR images. The results are assessed both visually and from the point of view of classification accuracy. Compared with other classifiers, our FCN Encoder is more accurate. From visual inspection of the Seattle water detection result, the FCN Encoder produces a very clear (smooth) output. The results show that the FCN Encoder, trained with a harder dataset and hyperparameter optimization, improves significantly its generalization performance. In a real-world application, for the prediction phase, the FCN Encoder is about 40 times faster than a Convolutional Neural Network (CNN) with sliding window.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信