基于fpga的数据流计算生物医学图像处理与重建

F. Grüll, U. Kebschull
{"title":"基于fpga的数据流计算生物医学图像处理与重建","authors":"F. Grüll, U. Kebschull","doi":"10.1109/FPL.2014.6927378","DOIUrl":null,"url":null,"abstract":"Increasing chip sizes and better programming tools have made it possible to increase the boundaries of application acceleration with FPGAs. Two applications, localization microscopy and electron tomography, are presented in the author's PhD thesis and summarized in this paper. Both have been ported from imperative languages to the dataflow paradigm that maps well onto long processing pipelines in custom hardware. The results show that an acceleration of 200 compared to an Intel i5 450 CPU for localization microscopy, and an acceleration of 5 over an Nvidia Tesla C1060 for electron tomography while maintaining full accuracy. The main challenge arose from the need to fully understand and re-write most of the imperative source in a form suitable for dataflow computing.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Biomedical image processing and reconstruction with dataflow computing on FPGAs\",\"authors\":\"F. Grüll, U. Kebschull\",\"doi\":\"10.1109/FPL.2014.6927378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing chip sizes and better programming tools have made it possible to increase the boundaries of application acceleration with FPGAs. Two applications, localization microscopy and electron tomography, are presented in the author's PhD thesis and summarized in this paper. Both have been ported from imperative languages to the dataflow paradigm that maps well onto long processing pipelines in custom hardware. The results show that an acceleration of 200 compared to an Intel i5 450 CPU for localization microscopy, and an acceleration of 5 over an Nvidia Tesla C1060 for electron tomography while maintaining full accuracy. The main challenge arose from the need to fully understand and re-write most of the imperative source in a form suitable for dataflow computing.\",\"PeriodicalId\":172795,\"journal\":{\"name\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2014.6927378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

越来越大的芯片尺寸和更好的编程工具使得用fpga增加应用程序加速的边界成为可能。作者在博士论文中介绍了定位显微镜和电子断层扫描的两种应用,并对其进行了总结。两者都已从命令式语言移植到数据流范式,该范式可以很好地映射到定制硬件中的长处理管道。结果表明,在保持完全精度的情况下,定位显微镜的加速度比Intel i5 450 CPU高200,电子断层扫描的加速度比Nvidia Tesla C1060高5。主要的挑战来自需要以适合数据流计算的形式完全理解和重写大部分命令式源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomedical image processing and reconstruction with dataflow computing on FPGAs
Increasing chip sizes and better programming tools have made it possible to increase the boundaries of application acceleration with FPGAs. Two applications, localization microscopy and electron tomography, are presented in the author's PhD thesis and summarized in this paper. Both have been ported from imperative languages to the dataflow paradigm that maps well onto long processing pipelines in custom hardware. The results show that an acceleration of 200 compared to an Intel i5 450 CPU for localization microscopy, and an acceleration of 5 over an Nvidia Tesla C1060 for electron tomography while maintaining full accuracy. The main challenge arose from the need to fully understand and re-write most of the imperative source in a form suitable for dataflow computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信