一种求解微分方程的遗传算法

P. MacNeil, S. Schultz
{"title":"一种求解微分方程的遗传算法","authors":"P. MacNeil, S. Schultz","doi":"10.1109/SECON.2010.5453833","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to solving differential equations by using a genetic algorithm to adjust parameter values in candidate solutions so as to minimize the sum squared error of the differential equation. An example solution is developed for a differential equation representing an electron in the Coulomb potential of two protons. Two measurable parameter values are estimated via this process and compared with published values.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A genetic algorithm approach to the solution of a differential equation\",\"authors\":\"P. MacNeil, S. Schultz\",\"doi\":\"10.1109/SECON.2010.5453833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach to solving differential equations by using a genetic algorithm to adjust parameter values in candidate solutions so as to minimize the sum squared error of the differential equation. An example solution is developed for a differential equation representing an electron in the Coulomb potential of two protons. Two measurable parameter values are estimated via this process and compared with published values.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用遗传算法调整候选解中的参数值以使微分方程的和平方误差最小的求解微分方程的方法。给出了一个表示两个质子库仑势中的一个电子的微分方程的解。通过此过程估计两个可测量的参数值,并与公布的值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm approach to the solution of a differential equation
This paper proposes an approach to solving differential equations by using a genetic algorithm to adjust parameter values in candidate solutions so as to minimize the sum squared error of the differential equation. An example solution is developed for a differential equation representing an electron in the Coulomb potential of two protons. Two measurable parameter values are estimated via this process and compared with published values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信