聚类方法对基于机器学习的太阳能发电预测模型的影响

Phil Aupke, A. Kassler, A. Theocharis, M. Nilsson, Isac Myrén Andersson
{"title":"聚类方法对基于机器学习的太阳能发电预测模型的影响","authors":"Phil Aupke, A. Kassler, A. Theocharis, M. Nilsson, Isac Myrén Andersson","doi":"10.1109/ISC255366.2022.9922507","DOIUrl":null,"url":null,"abstract":"Prediction of solar power generation is important in order to optimize energy exchanges in future micro-grids that integrate a large amount of photovoltaics. However, an accurate prediction is difficult due to the uncertainty of weather phenomena that impact produced power. In this paper, we evaluate the impact of different clustering methods on the forecast accuracy for predicting hourly ahead solar power when using machine learning based prediction approaches trained on weather and generated power features. In particular, we compare clustering methods using clearness index and K-means clustering, where we use both euclidian distance and dynamic time-warping. For evaluating prediction accuracy, we develop and compare different prediction models for each of the clusters using production data from a swedish SmartGrid. We demonstrate that proper tuning of thresholds for the clearness index improves prediction accuracy by 20.19% but results in worse performance than using K-means with all weather features as input to the clustering.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Clustering Methods on Machine Learning-based Solar Power Prediction Models\",\"authors\":\"Phil Aupke, A. Kassler, A. Theocharis, M. Nilsson, Isac Myrén Andersson\",\"doi\":\"10.1109/ISC255366.2022.9922507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of solar power generation is important in order to optimize energy exchanges in future micro-grids that integrate a large amount of photovoltaics. However, an accurate prediction is difficult due to the uncertainty of weather phenomena that impact produced power. In this paper, we evaluate the impact of different clustering methods on the forecast accuracy for predicting hourly ahead solar power when using machine learning based prediction approaches trained on weather and generated power features. In particular, we compare clustering methods using clearness index and K-means clustering, where we use both euclidian distance and dynamic time-warping. For evaluating prediction accuracy, we develop and compare different prediction models for each of the clusters using production data from a swedish SmartGrid. We demonstrate that proper tuning of thresholds for the clearness index improves prediction accuracy by 20.19% but results in worse performance than using K-means with all weather features as input to the clustering.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9922507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9922507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

太阳能发电预测对于优化未来集成大量光伏发电的微电网的能量交换具有重要意义。但是,由于影响发电的天气现象的不确定性,很难做出准确的预测。在本文中,我们使用基于天气和发电特征训练的机器学习预测方法,评估了不同聚类方法对预测小时前太阳能发电的预测精度的影响。特别地,我们比较了使用清晰度指数和K-means聚类的聚类方法,其中我们同时使用欧几里德距离和动态时间翘曲。为了评估预测的准确性,我们使用瑞典智能电网的生产数据为每个集群开发并比较了不同的预测模型。我们证明,适当调整清晰度指数的阈值可使预测精度提高20.19%,但与使用所有天气特征作为聚类输入的K-means相比,其性能更差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Clustering Methods on Machine Learning-based Solar Power Prediction Models
Prediction of solar power generation is important in order to optimize energy exchanges in future micro-grids that integrate a large amount of photovoltaics. However, an accurate prediction is difficult due to the uncertainty of weather phenomena that impact produced power. In this paper, we evaluate the impact of different clustering methods on the forecast accuracy for predicting hourly ahead solar power when using machine learning based prediction approaches trained on weather and generated power features. In particular, we compare clustering methods using clearness index and K-means clustering, where we use both euclidian distance and dynamic time-warping. For evaluating prediction accuracy, we develop and compare different prediction models for each of the clusters using production data from a swedish SmartGrid. We demonstrate that proper tuning of thresholds for the clearness index improves prediction accuracy by 20.19% but results in worse performance than using K-means with all weather features as input to the clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信