{"title":"Helios:一个可编程软件定义的太阳能模块","authors":"Noman Bashir, David E. Irwin, P. Shenoy","doi":"10.1145/3276774.3276783","DOIUrl":null,"url":null,"abstract":"The declining cost and rising penetration of solar energy is poised to fundamentally impact grid operations, as utilities must continuously offset, potentially rapid and increasingly large, power fluctuations from highly distributed and \"uncontrollable\" solar sites to maintain the instantaneous balance between electricity's supply and demand. Prior work proposes to address the problem by designing various policies that actively control solar power to optimize grid operations. However, these policies implicitly assume the presence of \"smart\" solar modules capable of regulating solar output based on various algorithms. Unfortunately, implementing such algorithms is currently not possible, as smart inverters embed only a small number of operating modes and are not programmable. To address the problem, this paper presents the design and implementation of a software-defined solar module, called Helios. Helios exposes a high-level programmatic interface to a DC-DC power optimizer, which enables sotware to remotely control a solar module's power output in real time between zero and its current maximum, as dictated by the Sun's position and weather. Unlike current smart inverters, Helios focuses on enabling direct programmatic control of real solar power capable of implementing a wide range of control policies, rather than a few highly-specific operating modes. We evaluate Helios' performance, including its latency, energy usage, and flexibility. For the latter, we implement and evaluate a wide range of solar control algorithms both in the lab, using a solar emulator and programmable load, and outdoors.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Helios: a programmable software-defined solar module\",\"authors\":\"Noman Bashir, David E. Irwin, P. Shenoy\",\"doi\":\"10.1145/3276774.3276783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The declining cost and rising penetration of solar energy is poised to fundamentally impact grid operations, as utilities must continuously offset, potentially rapid and increasingly large, power fluctuations from highly distributed and \\\"uncontrollable\\\" solar sites to maintain the instantaneous balance between electricity's supply and demand. Prior work proposes to address the problem by designing various policies that actively control solar power to optimize grid operations. However, these policies implicitly assume the presence of \\\"smart\\\" solar modules capable of regulating solar output based on various algorithms. Unfortunately, implementing such algorithms is currently not possible, as smart inverters embed only a small number of operating modes and are not programmable. To address the problem, this paper presents the design and implementation of a software-defined solar module, called Helios. Helios exposes a high-level programmatic interface to a DC-DC power optimizer, which enables sotware to remotely control a solar module's power output in real time between zero and its current maximum, as dictated by the Sun's position and weather. Unlike current smart inverters, Helios focuses on enabling direct programmatic control of real solar power capable of implementing a wide range of control policies, rather than a few highly-specific operating modes. We evaluate Helios' performance, including its latency, energy usage, and flexibility. For the latter, we implement and evaluate a wide range of solar control algorithms both in the lab, using a solar emulator and programmable load, and outdoors.\",\"PeriodicalId\":294697,\"journal\":{\"name\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276774.3276783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Helios: a programmable software-defined solar module
The declining cost and rising penetration of solar energy is poised to fundamentally impact grid operations, as utilities must continuously offset, potentially rapid and increasingly large, power fluctuations from highly distributed and "uncontrollable" solar sites to maintain the instantaneous balance between electricity's supply and demand. Prior work proposes to address the problem by designing various policies that actively control solar power to optimize grid operations. However, these policies implicitly assume the presence of "smart" solar modules capable of regulating solar output based on various algorithms. Unfortunately, implementing such algorithms is currently not possible, as smart inverters embed only a small number of operating modes and are not programmable. To address the problem, this paper presents the design and implementation of a software-defined solar module, called Helios. Helios exposes a high-level programmatic interface to a DC-DC power optimizer, which enables sotware to remotely control a solar module's power output in real time between zero and its current maximum, as dictated by the Sun's position and weather. Unlike current smart inverters, Helios focuses on enabling direct programmatic control of real solar power capable of implementing a wide range of control policies, rather than a few highly-specific operating modes. We evaluate Helios' performance, including its latency, energy usage, and flexibility. For the latter, we implement and evaluate a wide range of solar control algorithms both in the lab, using a solar emulator and programmable load, and outdoors.