成对(重)加载:可扩展地理空间应用的系统设计和基准测试

C. Albrecht, N. Bobroff, B. Elmegreen, Marcus Freitag, H. Hamann, Ildar Khabibrakhmanov, Klein Levente, Siyuan Lu, F. Marianno, J. Schmude, X. Shao, Carlo Siebenschuh, Rui Zhang
{"title":"成对(重)加载:可扩展地理空间应用的系统设计和基准测试","authors":"C. Albrecht, N. Bobroff, B. Elmegreen, Marcus Freitag, H. Hamann, Ildar Khabibrakhmanov, Klein Levente, Siyuan Lu, F. Marianno, J. Schmude, X. Shao, Carlo Siebenschuh, Rui Zhang","doi":"10.1109/LAGIRS48042.2020.9165675","DOIUrl":null,"url":null,"abstract":"In this paper we benchmark a previously introduced big data platform that enables the analysis of big data from remote sensing and other geospatial-temporal data. The platform, called IBM PAIRS Geoscope, has been developed by leveraging open source big data technologies (Hadoop/HBase) that are in principle scalable in storage and compute to hundreds of PetaBytes. Currently, PAIRS hosts multiple PetaBytes of curated and geospatial-temporally indexed data. It organizes all data with key-value combinations, performing analytics close to the data to minimize data movement.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pairs (Re)Loaded: System Design & Benchmarking For Scalable Geospatial Applications\",\"authors\":\"C. Albrecht, N. Bobroff, B. Elmegreen, Marcus Freitag, H. Hamann, Ildar Khabibrakhmanov, Klein Levente, Siyuan Lu, F. Marianno, J. Schmude, X. Shao, Carlo Siebenschuh, Rui Zhang\",\"doi\":\"10.1109/LAGIRS48042.2020.9165675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we benchmark a previously introduced big data platform that enables the analysis of big data from remote sensing and other geospatial-temporal data. The platform, called IBM PAIRS Geoscope, has been developed by leveraging open source big data technologies (Hadoop/HBase) that are in principle scalable in storage and compute to hundreds of PetaBytes. Currently, PAIRS hosts multiple PetaBytes of curated and geospatial-temporally indexed data. It organizes all data with key-value combinations, performing analytics close to the data to minimize data movement.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们对先前介绍的一个大数据平台进行了基准测试,该平台可以分析来自遥感和其他地理时空数据的大数据。这个名为IBM PAIRS Geoscope的平台是利用开源大数据技术(Hadoop/HBase)开发的,原则上可以在存储和计算上扩展到数百pb。目前,pair托管了多个pb的策划和地理时空索引数据。它使用键值组合组织所有数据,在数据附近执行分析,以最大限度地减少数据移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pairs (Re)Loaded: System Design & Benchmarking For Scalable Geospatial Applications
In this paper we benchmark a previously introduced big data platform that enables the analysis of big data from remote sensing and other geospatial-temporal data. The platform, called IBM PAIRS Geoscope, has been developed by leveraging open source big data technologies (Hadoop/HBase) that are in principle scalable in storage and compute to hundreds of PetaBytes. Currently, PAIRS hosts multiple PetaBytes of curated and geospatial-temporally indexed data. It organizes all data with key-value combinations, performing analytics close to the data to minimize data movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信