M. Warzecha, H. Jankowski, L. Maksymowicz, T. Pisarkiewicz, C. Worek
{"title":"光伏材料硒化的快速温度处理(RTP)系统","authors":"M. Warzecha, H. Jankowski, L. Maksymowicz, T. Pisarkiewicz, C. Worek","doi":"10.1117/12.721040","DOIUrl":null,"url":null,"abstract":"Rapid Temperature Processing (RTP) methodology is widely applied in thin-film photovoltaic materials technology due to high quality of fabricated cells and also perspectives for their mass manufacturing. This paper describes a RTP device structure which contains the graphite reactor for selenization of Cu/In or Cu/In/Se precursors. Strong nonlinearity of radiative energy transfer makes RTP controlling difficult so it still needs to be improved. Using mathematical model of the device, we are proposing the method of process controlling. Experimentally obtained temperature profiles of Rapid Temperature Processes are presented and compared with temperature profile of typical CIS selenization graphite reactor. Presented steering procedure, based on our model, gives improves by decreasing time needed for selenization and simultaneously reducing costs of the process.","PeriodicalId":405495,"journal":{"name":"Optoelectronic and Electronic Sensors","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid temperature processing (RTP) system for selenization of photovoltaic materials\",\"authors\":\"M. Warzecha, H. Jankowski, L. Maksymowicz, T. Pisarkiewicz, C. Worek\",\"doi\":\"10.1117/12.721040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid Temperature Processing (RTP) methodology is widely applied in thin-film photovoltaic materials technology due to high quality of fabricated cells and also perspectives for their mass manufacturing. This paper describes a RTP device structure which contains the graphite reactor for selenization of Cu/In or Cu/In/Se precursors. Strong nonlinearity of radiative energy transfer makes RTP controlling difficult so it still needs to be improved. Using mathematical model of the device, we are proposing the method of process controlling. Experimentally obtained temperature profiles of Rapid Temperature Processes are presented and compared with temperature profile of typical CIS selenization graphite reactor. Presented steering procedure, based on our model, gives improves by decreasing time needed for selenization and simultaneously reducing costs of the process.\",\"PeriodicalId\":405495,\"journal\":{\"name\":\"Optoelectronic and Electronic Sensors\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optoelectronic and Electronic Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.721040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronic and Electronic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.721040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid temperature processing (RTP) system for selenization of photovoltaic materials
Rapid Temperature Processing (RTP) methodology is widely applied in thin-film photovoltaic materials technology due to high quality of fabricated cells and also perspectives for their mass manufacturing. This paper describes a RTP device structure which contains the graphite reactor for selenization of Cu/In or Cu/In/Se precursors. Strong nonlinearity of radiative energy transfer makes RTP controlling difficult so it still needs to be improved. Using mathematical model of the device, we are proposing the method of process controlling. Experimentally obtained temperature profiles of Rapid Temperature Processes are presented and compared with temperature profile of typical CIS selenization graphite reactor. Presented steering procedure, based on our model, gives improves by decreasing time needed for selenization and simultaneously reducing costs of the process.