谱有未知极点的平稳过程的半参数估计

J. Hidalgo
{"title":"谱有未知极点的平稳过程的半参数估计","authors":"J. Hidalgo","doi":"10.1214/009053605000000318","DOIUrl":null,"url":null,"abstract":"We consider the estimation of the location of the pole and memory parameter, λ0 and α respectively, of covariance stationary linear processes whose spectral density function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a consistent estimator of λ0 and derive its limit distribution Zλ0 . As in related optimization problems, when the true parameter value can lie on the boundary of the parameter space, we show that Zλ0 is distributed as a normal random variable when λ0 ∈ (0, π), whereas for λ0 = 0 or π, Zλ0 is a mixture of discrete and continuous random variables with weights equal to 1/2. More specifically, when λ0 = 0, Zλ0 is distributed as a normal random variable truncated at zero. Moreover, we describe and examine a two-step estimator of the memory parameter α, showing that neither its limit distribution nor its rate of convergence is affected by the estimation of λ0. Thus, we reinforce and extend previous results with respect to the estimation of α when λ0 is assumed to be known a priori. A small Monte Carlo study is included to illustrate the finite sample performance of our estimators.","PeriodicalId":437927,"journal":{"name":"STICERD: Econometrics (EM) (Topic)","volume":"488 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Semiparametric Estimation for Stationary Processes Whose Spectra Have an Unknown Pole\",\"authors\":\"J. Hidalgo\",\"doi\":\"10.1214/009053605000000318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the estimation of the location of the pole and memory parameter, λ0 and α respectively, of covariance stationary linear processes whose spectral density function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a consistent estimator of λ0 and derive its limit distribution Zλ0 . As in related optimization problems, when the true parameter value can lie on the boundary of the parameter space, we show that Zλ0 is distributed as a normal random variable when λ0 ∈ (0, π), whereas for λ0 = 0 or π, Zλ0 is a mixture of discrete and continuous random variables with weights equal to 1/2. More specifically, when λ0 = 0, Zλ0 is distributed as a normal random variable truncated at zero. Moreover, we describe and examine a two-step estimator of the memory parameter α, showing that neither its limit distribution nor its rate of convergence is affected by the estimation of λ0. Thus, we reinforce and extend previous results with respect to the estimation of α when λ0 is assumed to be known a priori. A small Monte Carlo study is included to illustrate the finite sample performance of our estimators.\",\"PeriodicalId\":437927,\"journal\":{\"name\":\"STICERD: Econometrics (EM) (Topic)\",\"volume\":\"488 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STICERD: Econometrics (EM) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/009053605000000318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STICERD: Econometrics (EM) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/009053605000000318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们考虑了谱密度函数f(λ)在λ邻域内满足f(λ) ~ C|λ - λ0| - α的协方差平稳线性过程的极点和记忆参数λ0和α的位置估计。我们定义了λ0的一致估计量,并推导了它的极限分布Zλ0。在相关的优化问题中,当参数的真值可以在参数空间的边界上时,我们证明了当λ0∈(0,π)时,Zλ0是正态随机变量,而当λ0 = 0或π时,Zλ0是一个权为1/2的离散和连续随机变量的混合。更具体地说,当λ0 = 0时,Zλ0分布为在0处截断的正态随机变量。此外,我们描述并检验了记忆参数α的一个两步估计量,表明它的极限分布和收敛速度都不受λ0估计的影响。因此,当λ0被假定为先验已知时,我们加强和扩展了先前关于α估计的结果。一个小的蒙特卡罗研究包括来说明我们的估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric Estimation for Stationary Processes Whose Spectra Have an Unknown Pole
We consider the estimation of the location of the pole and memory parameter, λ0 and α respectively, of covariance stationary linear processes whose spectral density function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a consistent estimator of λ0 and derive its limit distribution Zλ0 . As in related optimization problems, when the true parameter value can lie on the boundary of the parameter space, we show that Zλ0 is distributed as a normal random variable when λ0 ∈ (0, π), whereas for λ0 = 0 or π, Zλ0 is a mixture of discrete and continuous random variables with weights equal to 1/2. More specifically, when λ0 = 0, Zλ0 is distributed as a normal random variable truncated at zero. Moreover, we describe and examine a two-step estimator of the memory parameter α, showing that neither its limit distribution nor its rate of convergence is affected by the estimation of λ0. Thus, we reinforce and extend previous results with respect to the estimation of α when λ0 is assumed to be known a priori. A small Monte Carlo study is included to illustrate the finite sample performance of our estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信