跨洋飞行通信自适应架构设计

R. Slywczak, O. Mezu, B. Green
{"title":"跨洋飞行通信自适应架构设计","authors":"R. Slywczak, O. Mezu, B. Green","doi":"10.1109/DASC.2004.1390820","DOIUrl":null,"url":null,"abstract":"During commercial flights, pilots require continuous communications and seamless access to data products, such as graphical weather maps and turbulence alerts, to proactively react to dynamic flight conditions. NASA/Glenn Research Center (GRC) and the weather information communications (WINCOMM) project have been researching methods to improve communications and to disseminate graphical weather data products to aircraft flying in the transoceanic region where en route weather collection and dissemination are minimal. The goal is to employ commercial satellite-based communications and packet switching technologies to provide a cost effective and efficient communications solution for aviation. This paper describes the goals of the WINCOMM program and the research related to the transoceanic scenario. It describes the flight architecture and the proposed communication network that is currently being implemented in the laboratory. The main goal is to have a seamless but efficient separation of services between the cockpit and cabin data with both data existing on the same data link. The initial findings for the quality of service (QoS) research is presented along with the techniques for implementing QoS in Cisco routers and the design of the QoS schemes for the transoceanic testbed. Data for the testing initially focus on sending informational and graphical weather data but eventually encompass warning/cockpit alerts and, hopefully, air traffic control messages. In mid-2005, the laboratory setting can be flight tested aboard the Langley Research Center's (LaRC) Boeing-757.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing adaptive architectures for transoceanic in flight communications\",\"authors\":\"R. Slywczak, O. Mezu, B. Green\",\"doi\":\"10.1109/DASC.2004.1390820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During commercial flights, pilots require continuous communications and seamless access to data products, such as graphical weather maps and turbulence alerts, to proactively react to dynamic flight conditions. NASA/Glenn Research Center (GRC) and the weather information communications (WINCOMM) project have been researching methods to improve communications and to disseminate graphical weather data products to aircraft flying in the transoceanic region where en route weather collection and dissemination are minimal. The goal is to employ commercial satellite-based communications and packet switching technologies to provide a cost effective and efficient communications solution for aviation. This paper describes the goals of the WINCOMM program and the research related to the transoceanic scenario. It describes the flight architecture and the proposed communication network that is currently being implemented in the laboratory. The main goal is to have a seamless but efficient separation of services between the cockpit and cabin data with both data existing on the same data link. The initial findings for the quality of service (QoS) research is presented along with the techniques for implementing QoS in Cisco routers and the design of the QoS schemes for the transoceanic testbed. Data for the testing initially focus on sending informational and graphical weather data but eventually encompass warning/cockpit alerts and, hopefully, air traffic control messages. In mid-2005, the laboratory setting can be flight tested aboard the Langley Research Center's (LaRC) Boeing-757.\",\"PeriodicalId\":422463,\"journal\":{\"name\":\"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2004.1390820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1390820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在商业飞行中,飞行员需要持续的通信和无缝访问数据产品,如图形天气图和湍流警报,以主动应对动态飞行条件。美国宇航局/格伦研究中心(GRC)和天气信息通信(WINCOMM)项目一直在研究改善通信和向越洋地区飞行的飞机传播图形天气数据产品的方法,因为越洋地区的途中天气收集和传播很少。目标是采用商业卫星通信和分组交换技术,为航空提供具有成本效益和效率的通信解决方案。本文介绍了WINCOMM项目的目标以及与越洋场景相关的研究。它描述了目前正在实验室中实现的飞行体系结构和拟议的通信网络。其主要目标是在驾驶舱和客舱数据之间实现无缝但有效的服务分离,使两者的数据都存在于同一数据链路上。介绍了服务质量(QoS)研究的初步成果,以及在Cisco路由器中实现QoS的技术和跨洋试验台QoS方案的设计。测试的数据最初集中于发送信息和图形天气数据,但最终包括警告/驾驶舱警报,并有望提供空中交通管制信息。在2005年中期,实验室环境可以在兰利研究中心(LaRC)波音-757上进行飞行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing adaptive architectures for transoceanic in flight communications
During commercial flights, pilots require continuous communications and seamless access to data products, such as graphical weather maps and turbulence alerts, to proactively react to dynamic flight conditions. NASA/Glenn Research Center (GRC) and the weather information communications (WINCOMM) project have been researching methods to improve communications and to disseminate graphical weather data products to aircraft flying in the transoceanic region where en route weather collection and dissemination are minimal. The goal is to employ commercial satellite-based communications and packet switching technologies to provide a cost effective and efficient communications solution for aviation. This paper describes the goals of the WINCOMM program and the research related to the transoceanic scenario. It describes the flight architecture and the proposed communication network that is currently being implemented in the laboratory. The main goal is to have a seamless but efficient separation of services between the cockpit and cabin data with both data existing on the same data link. The initial findings for the quality of service (QoS) research is presented along with the techniques for implementing QoS in Cisco routers and the design of the QoS schemes for the transoceanic testbed. Data for the testing initially focus on sending informational and graphical weather data but eventually encompass warning/cockpit alerts and, hopefully, air traffic control messages. In mid-2005, the laboratory setting can be flight tested aboard the Langley Research Center's (LaRC) Boeing-757.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信