嵌入形状记忆合金的均匀和锥形组合梁的振动分析

Q. Atiyah, A. Hameed, Baqer Jabbar Assi
{"title":"嵌入形状记忆合金的均匀和锥形组合梁的振动分析","authors":"Q. Atiyah, A. Hameed, Baqer Jabbar Assi","doi":"10.29196/jubes.v27i1.1972","DOIUrl":null,"url":null,"abstract":"In this study, laminated composite materials were hybridized with E-glass fiber and Nitinol (Nickel-Titanium) wires. Hand lay-up technique was used to prepare the samples, epoxy resin type (Sikadur 52 N) was used as matrix reinforced by one fiber from E-glass fiber woven roving with embedded nitinol wires with a diameter 0.5 mm for samples and number of wires such as 0, 1, 3, 5 and 9 to find the effect of the number of wires on the natural frequency. The samples were fixed as a cantilever beam. The effects of increasing the number of nitinol wires, the diameter of nitinol wires, the length of the cantilever beam and the thickness of beam on the natural frequencies of the beam were studied. Also, the effects of the tapered in width side and thickness side on the natural frequencies of cantilever beam were studied. The results showed that the increasing in the number of nitinol wires and the diameter of nitinol wires lead to decrease the natural frequency in martensite phase and increase the natural frequency in austenite phase. Also, the increasing in thickness of beam and width ratio of the beam lead to increase the natural frequency. As well as, the increasing in the thickness ratio leads to increase the first natural frequency and decrease the second and third ones. In addition, the increasing in the length of the beam decreases the natural frequency.","PeriodicalId":311103,"journal":{"name":"Journal of University of Babylon for Engineering Sciences","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vibration Analysis of Uniform and Tapered Composite Beams with Embedded Shape Memory Alloy\",\"authors\":\"Q. Atiyah, A. Hameed, Baqer Jabbar Assi\",\"doi\":\"10.29196/jubes.v27i1.1972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, laminated composite materials were hybridized with E-glass fiber and Nitinol (Nickel-Titanium) wires. Hand lay-up technique was used to prepare the samples, epoxy resin type (Sikadur 52 N) was used as matrix reinforced by one fiber from E-glass fiber woven roving with embedded nitinol wires with a diameter 0.5 mm for samples and number of wires such as 0, 1, 3, 5 and 9 to find the effect of the number of wires on the natural frequency. The samples were fixed as a cantilever beam. The effects of increasing the number of nitinol wires, the diameter of nitinol wires, the length of the cantilever beam and the thickness of beam on the natural frequencies of the beam were studied. Also, the effects of the tapered in width side and thickness side on the natural frequencies of cantilever beam were studied. The results showed that the increasing in the number of nitinol wires and the diameter of nitinol wires lead to decrease the natural frequency in martensite phase and increase the natural frequency in austenite phase. Also, the increasing in thickness of beam and width ratio of the beam lead to increase the natural frequency. As well as, the increasing in the thickness ratio leads to increase the first natural frequency and decrease the second and third ones. In addition, the increasing in the length of the beam decreases the natural frequency.\",\"PeriodicalId\":311103,\"journal\":{\"name\":\"Journal of University of Babylon for Engineering Sciences\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/jubes.v27i1.1972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/jubes.v27i1.1972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,层合复合材料与e -玻璃纤维和镍钛诺(镍钛)丝杂交。采用手工铺层技术制备样品,以环氧树脂型(Sikadur 52 N)为基体,以e -玻璃纤维机织粗纱中的一根纤维为增强纤维,样品内嵌直径为0.5 mm的镍钛诺丝,丝数分别为0、1、3、5、9,研究丝数对固有频率的影响。样品被固定为悬臂梁。研究了增加镍钛诺丝的数量、镍钛诺丝的直径、悬臂梁的长度和梁的厚度对梁固有频率的影响。研究了悬臂梁宽度边和厚度边的变细对悬臂梁固有频率的影响。结果表明:增加镍钛诺丝的数量和丝径,导致马氏体相的固有频率降低,奥氏体相的固有频率升高;同时,增加梁的厚度和梁的宽度比也会导致固有频率的增加。随着厚度比的增大,第一阶固有频率增大,第二阶和第三阶固有频率减小。此外,梁的长度增加会降低固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration Analysis of Uniform and Tapered Composite Beams with Embedded Shape Memory Alloy
In this study, laminated composite materials were hybridized with E-glass fiber and Nitinol (Nickel-Titanium) wires. Hand lay-up technique was used to prepare the samples, epoxy resin type (Sikadur 52 N) was used as matrix reinforced by one fiber from E-glass fiber woven roving with embedded nitinol wires with a diameter 0.5 mm for samples and number of wires such as 0, 1, 3, 5 and 9 to find the effect of the number of wires on the natural frequency. The samples were fixed as a cantilever beam. The effects of increasing the number of nitinol wires, the diameter of nitinol wires, the length of the cantilever beam and the thickness of beam on the natural frequencies of the beam were studied. Also, the effects of the tapered in width side and thickness side on the natural frequencies of cantilever beam were studied. The results showed that the increasing in the number of nitinol wires and the diameter of nitinol wires lead to decrease the natural frequency in martensite phase and increase the natural frequency in austenite phase. Also, the increasing in thickness of beam and width ratio of the beam lead to increase the natural frequency. As well as, the increasing in the thickness ratio leads to increase the first natural frequency and decrease the second and third ones. In addition, the increasing in the length of the beam decreases the natural frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信