基于量子语言模型的查询扩展

Qiuchi Li, M. Melucci, P. Tiwari
{"title":"基于量子语言模型的查询扩展","authors":"Qiuchi Li, M. Melucci, P. Tiwari","doi":"10.1145/3234944.3234970","DOIUrl":null,"url":null,"abstract":"The analogy between words, documents and queries and the Quantum Mechanics (QM) concepts gives rise to various quantum-inspired Information Retrieval (IR) models. As one of the most successful applications among them, Quantum Language Model (QLM) achieves superior performances compared to various classical models on ad-hoc retrieval tasks. However, the EM-based estimation strategy for QLM is limited in that it cannot efficiently converge to global optimum. As a result, subsequent QLM-based models are more or less restricted to a limited vocabulary. In order to ease this limitation, this study investigates a query expansion framework on the QLM basis. Essentially, the additional terms are selected from the constructed QLM of top-K returned documents in the initial ranking, and a re-ranking is conducted on the expanded query to generate the final ranks. Experiments on TREC 2013 and 2014 session track datasets demonstrate the effectiveness of our model.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Quantum Language Model-based Query Expansion\",\"authors\":\"Qiuchi Li, M. Melucci, P. Tiwari\",\"doi\":\"10.1145/3234944.3234970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analogy between words, documents and queries and the Quantum Mechanics (QM) concepts gives rise to various quantum-inspired Information Retrieval (IR) models. As one of the most successful applications among them, Quantum Language Model (QLM) achieves superior performances compared to various classical models on ad-hoc retrieval tasks. However, the EM-based estimation strategy for QLM is limited in that it cannot efficiently converge to global optimum. As a result, subsequent QLM-based models are more or less restricted to a limited vocabulary. In order to ease this limitation, this study investigates a query expansion framework on the QLM basis. Essentially, the additional terms are selected from the constructed QLM of top-K returned documents in the initial ranking, and a re-ranking is conducted on the expanded query to generate the final ranks. Experiments on TREC 2013 and 2014 session track datasets demonstrate the effectiveness of our model.\",\"PeriodicalId\":193631,\"journal\":{\"name\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234944.3234970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

单词、文档和查询与量子力学(QM)概念之间的类比产生了各种量子启发的信息检索(IR)模型。作为其中最成功的应用之一,量子语言模型(Quantum Language Model, QLM)在特殊检索任务上取得了优于经典模型的性能。然而,基于em的QLM估计策略存在着不能有效收敛到全局最优的局限性。因此,后续的基于qlm的模型或多或少地被限制在有限的词汇表中。为了缓解这一限制,本研究在QLM的基础上研究了一个查询扩展框架。从本质上讲,从初始排序中top-K返回文档的构造的QLM中选择额外的术语,并对扩展的查询进行重新排序以生成最终排名。在TREC 2013和2014会话轨迹数据集上的实验证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Language Model-based Query Expansion
The analogy between words, documents and queries and the Quantum Mechanics (QM) concepts gives rise to various quantum-inspired Information Retrieval (IR) models. As one of the most successful applications among them, Quantum Language Model (QLM) achieves superior performances compared to various classical models on ad-hoc retrieval tasks. However, the EM-based estimation strategy for QLM is limited in that it cannot efficiently converge to global optimum. As a result, subsequent QLM-based models are more or less restricted to a limited vocabulary. In order to ease this limitation, this study investigates a query expansion framework on the QLM basis. Essentially, the additional terms are selected from the constructed QLM of top-K returned documents in the initial ranking, and a re-ranking is conducted on the expanded query to generate the final ranks. Experiments on TREC 2013 and 2014 session track datasets demonstrate the effectiveness of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信