伪微分算子通过Gabor乘子和样条空间离散化的类松弛稳定性

D. Onchis, Simone Zappalá
{"title":"伪微分算子通过Gabor乘子和样条空间离散化的类松弛稳定性","authors":"D. Onchis, Simone Zappalá","doi":"10.1109/SYNASC.2018.00026","DOIUrl":null,"url":null,"abstract":"In this paper we study the stability of projection schemes for pseudodifferential operators defined over a locally compact Abelian (LCA) group G unto a space of generalized Gabor multipliers (GGM), also called time-frequency multipliers. The projection is reformulated as a projection of the symbol operator into the spline-type (ST) space generated by the Rihaczek distributions that characterize the selected space of multipliers and the related subgroup of the time-frequency space G×G. The symplectic nature of the time-frequency group is avoided, hence a constructive realizable algorithm can be performed on the LCA group G × G. Stability is defined as uniform boundedness of a sequence of projections induced by an automorphism over the group G. We will describe the automorphisms that generate a sequence of GGM spaces and the ones that characterize stability.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lax-Like Stability for the Discretization of Pseudodifferential Operators through Gabor Multipliers and Spline-Type Spaces\",\"authors\":\"D. Onchis, Simone Zappalá\",\"doi\":\"10.1109/SYNASC.2018.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the stability of projection schemes for pseudodifferential operators defined over a locally compact Abelian (LCA) group G unto a space of generalized Gabor multipliers (GGM), also called time-frequency multipliers. The projection is reformulated as a projection of the symbol operator into the spline-type (ST) space generated by the Rihaczek distributions that characterize the selected space of multipliers and the related subgroup of the time-frequency space G×G. The symplectic nature of the time-frequency group is avoided, hence a constructive realizable algorithm can be performed on the LCA group G × G. Stability is defined as uniform boundedness of a sequence of projections induced by an automorphism over the group G. We will describe the automorphisms that generate a sequence of GGM spaces and the ones that characterize stability.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在广义Gabor乘子(也称为时频乘子)空间上定义在局部紧阿贝尔群G上的伪微分算子的投影格式的稳定性。投影被重新表述为符号算子到样条型(ST)空间的投影,该空间由Rihaczek分布生成,该分布表征乘法器的选定空间和时频空间G×G的相关子群。避免了时频群的复杂性,因此可以在LCA群G × G上执行一种建设性的可实现算法。稳定性定义为由群G上的自同构引起的投影序列的一致有界性。我们将描述产生GGM空间序列的自同构和表征稳定性的自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lax-Like Stability for the Discretization of Pseudodifferential Operators through Gabor Multipliers and Spline-Type Spaces
In this paper we study the stability of projection schemes for pseudodifferential operators defined over a locally compact Abelian (LCA) group G unto a space of generalized Gabor multipliers (GGM), also called time-frequency multipliers. The projection is reformulated as a projection of the symbol operator into the spline-type (ST) space generated by the Rihaczek distributions that characterize the selected space of multipliers and the related subgroup of the time-frequency space G×G. The symplectic nature of the time-frequency group is avoided, hence a constructive realizable algorithm can be performed on the LCA group G × G. Stability is defined as uniform boundedness of a sequence of projections induced by an automorphism over the group G. We will describe the automorphisms that generate a sequence of GGM spaces and the ones that characterize stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信