基于各种扫描技术的增强离散余弦变换特征虹膜识别

P. Samant, R. Agarwal, A. Bansal
{"title":"基于各种扫描技术的增强离散余弦变换特征虹膜识别","authors":"P. Samant, R. Agarwal, A. Bansal","doi":"10.1109/UPCON.2017.8251128","DOIUrl":null,"url":null,"abstract":"Distinctive and irreversible features of the iris make its most secure and trustworthy biometric modality for person identification. This paper presents the comparison of various scanning techniques for feature extraction in iris recognition. Iris localization and segmentation was performed using Circular Haugh Transformation, which estimates the parameters of iris using edge map. Normalization on the segmented iris was performed using Rubber sheet model, to convert the circular iris in-to a rectangle of fix dimension. Thereafter Discrete Cosine Transformation coefficients were extracted from the normalized iris using different scanning techniques. The scanning techniques used are Zigzag, Raster, and Saw-tooth. Experimental results show the promising performance of Raster Type-II scanning technique with 100 coefficients. The database used for the observations is CASIA iris database version-IV. The analysis and experimental results show that proposed scheme can be used in iris recognition systems for better performance.","PeriodicalId":422673,"journal":{"name":"2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhanced discrete cosine transformation feature based iris recognition using various scanning techniques\",\"authors\":\"P. Samant, R. Agarwal, A. Bansal\",\"doi\":\"10.1109/UPCON.2017.8251128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distinctive and irreversible features of the iris make its most secure and trustworthy biometric modality for person identification. This paper presents the comparison of various scanning techniques for feature extraction in iris recognition. Iris localization and segmentation was performed using Circular Haugh Transformation, which estimates the parameters of iris using edge map. Normalization on the segmented iris was performed using Rubber sheet model, to convert the circular iris in-to a rectangle of fix dimension. Thereafter Discrete Cosine Transformation coefficients were extracted from the normalized iris using different scanning techniques. The scanning techniques used are Zigzag, Raster, and Saw-tooth. Experimental results show the promising performance of Raster Type-II scanning technique with 100 coefficients. The database used for the observations is CASIA iris database version-IV. The analysis and experimental results show that proposed scheme can be used in iris recognition systems for better performance.\",\"PeriodicalId\":422673,\"journal\":{\"name\":\"2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPCON.2017.8251128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON.2017.8251128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

虹膜独特的不可逆特性使其成为最安全、最可靠的生物识别方式。本文对虹膜识别中用于特征提取的各种扫描技术进行了比较。利用圆形哈夫变换对虹膜进行定位和分割,利用边缘图估计虹膜的参数。利用橡胶片模型对分割后的虹膜进行归一化处理,将圆形的虹膜转换为固定尺寸的矩形。然后利用不同的扫描技术从归一化虹膜中提取离散余弦变换系数。使用的扫描技术有锯齿形、栅格和锯齿形。实验结果表明,100系数栅格ii型扫描技术具有良好的性能。观测使用的数据库为CASIA iris数据库version-IV。分析和实验结果表明,该方法可用于虹膜识别系统,具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced discrete cosine transformation feature based iris recognition using various scanning techniques
Distinctive and irreversible features of the iris make its most secure and trustworthy biometric modality for person identification. This paper presents the comparison of various scanning techniques for feature extraction in iris recognition. Iris localization and segmentation was performed using Circular Haugh Transformation, which estimates the parameters of iris using edge map. Normalization on the segmented iris was performed using Rubber sheet model, to convert the circular iris in-to a rectangle of fix dimension. Thereafter Discrete Cosine Transformation coefficients were extracted from the normalized iris using different scanning techniques. The scanning techniques used are Zigzag, Raster, and Saw-tooth. Experimental results show the promising performance of Raster Type-II scanning technique with 100 coefficients. The database used for the observations is CASIA iris database version-IV. The analysis and experimental results show that proposed scheme can be used in iris recognition systems for better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信