基于盲信道估计的LoRa调制迭代解调与译码

Takuya Mihara, S. Ibi, Takumi Takahashi, H. Iwai
{"title":"基于盲信道估计的LoRa调制迭代解调与译码","authors":"Takuya Mihara, S. Ibi, Takumi Takahashi, H. Iwai","doi":"10.1109/APWCS50173.2021.9548767","DOIUrl":null,"url":null,"abstract":"This paper proposes an iterative detection and decoding (IDD) scheme with a blind channel estimator in the physical layer of long range widearea network (LoRaWAN). The proposed scheme exchanges log-likelihood ratios (LLRs) as soft decision values between the LoRa demodulator and the Hamming decoder to improve the signal detection capability while obtaining the iterative gain. In the typical LoRa demodulation using hard decision without IDD, the received signal is detected by the binary values, i.e. \"0\" or \"1\"; and thus, the demodulation and decoding processes are simplified. However, the resulting rounding error occurs the mutual information loss, leading to non-negligible performance degradation. In order to cope with this issue, it is vital to capture the stochastic behavior of the input and output values of the demodulator and decoder. The LLR based on the stochastic signal model enables to improve the error correction capability of the decoder and enhance the iterative gain. Finally, computer simulation results explicitly demonstrate the efficacy of the proposed method in terms of bit error rate (BER) performance.","PeriodicalId":164737,"journal":{"name":"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iterative Demodulation and Decoding with Blind Channel Estimator for LoRa Modulation\",\"authors\":\"Takuya Mihara, S. Ibi, Takumi Takahashi, H. Iwai\",\"doi\":\"10.1109/APWCS50173.2021.9548767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an iterative detection and decoding (IDD) scheme with a blind channel estimator in the physical layer of long range widearea network (LoRaWAN). The proposed scheme exchanges log-likelihood ratios (LLRs) as soft decision values between the LoRa demodulator and the Hamming decoder to improve the signal detection capability while obtaining the iterative gain. In the typical LoRa demodulation using hard decision without IDD, the received signal is detected by the binary values, i.e. \\\"0\\\" or \\\"1\\\"; and thus, the demodulation and decoding processes are simplified. However, the resulting rounding error occurs the mutual information loss, leading to non-negligible performance degradation. In order to cope with this issue, it is vital to capture the stochastic behavior of the input and output values of the demodulator and decoder. The LLR based on the stochastic signal model enables to improve the error correction capability of the decoder and enhance the iterative gain. Finally, computer simulation results explicitly demonstrate the efficacy of the proposed method in terms of bit error rate (BER) performance.\",\"PeriodicalId\":164737,\"journal\":{\"name\":\"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCS50173.2021.9548767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS50173.2021.9548767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种在远程广域网(LoRaWAN)物理层中使用盲信道估计器的迭代检测和解码(IDD)方案。该方案以对数似然比(llr)作为LoRa解调器和汉明解码器之间的软判决值,在获得迭代增益的同时提高信号检测能力。在典型的无IDD硬判决的LoRa解调中,接收信号由二值检测,即。0或1;从而简化了解调和解码过程。然而,由此产生的舍入误差会导致互信息丢失,导致不可忽略的性能下降。为了解决这个问题,捕获解调器和解码器输入和输出值的随机行为是至关重要的。基于随机信号模型的LLR可以提高解码器的纠错能力,提高迭代增益。最后,计算机仿真结果明确地证明了该方法在误码率(BER)性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Demodulation and Decoding with Blind Channel Estimator for LoRa Modulation
This paper proposes an iterative detection and decoding (IDD) scheme with a blind channel estimator in the physical layer of long range widearea network (LoRaWAN). The proposed scheme exchanges log-likelihood ratios (LLRs) as soft decision values between the LoRa demodulator and the Hamming decoder to improve the signal detection capability while obtaining the iterative gain. In the typical LoRa demodulation using hard decision without IDD, the received signal is detected by the binary values, i.e. "0" or "1"; and thus, the demodulation and decoding processes are simplified. However, the resulting rounding error occurs the mutual information loss, leading to non-negligible performance degradation. In order to cope with this issue, it is vital to capture the stochastic behavior of the input and output values of the demodulator and decoder. The LLR based on the stochastic signal model enables to improve the error correction capability of the decoder and enhance the iterative gain. Finally, computer simulation results explicitly demonstrate the efficacy of the proposed method in terms of bit error rate (BER) performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信