基于突变的遗传算法在处理器配置问题中的应用

T. Lau, E. Tsang
{"title":"基于突变的遗传算法在处理器配置问题中的应用","authors":"T. Lau, E. Tsang","doi":"10.1109/TAI.1996.560395","DOIUrl":null,"url":null,"abstract":"The processor configuration problem (PCP) is a constraint optimization problem. The task is to link up a finite set of processors into a network; minimizing the maximum distance between processors. Since each processor has a limited number of communication channels, a carefully planned layout could minimize the overhead for message switching. We present a genetic algorithm (GA) approach to the PCP. Our technique uses a mutation based GA, a function that produces schemata by analyzing previous solutions and an effective data representation. Our approach has been shown to outperform other published techniques in this problem.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Applying a mutation-based genetic algorithm to processor configuration problems\",\"authors\":\"T. Lau, E. Tsang\",\"doi\":\"10.1109/TAI.1996.560395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The processor configuration problem (PCP) is a constraint optimization problem. The task is to link up a finite set of processors into a network; minimizing the maximum distance between processors. Since each processor has a limited number of communication channels, a carefully planned layout could minimize the overhead for message switching. We present a genetic algorithm (GA) approach to the PCP. Our technique uses a mutation based GA, a function that produces schemata by analyzing previous solutions and an effective data representation. Our approach has been shown to outperform other published techniques in this problem.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

处理器配置问题(PCP)是一个约束优化问题。任务是将一组有限的处理器连接成一个网络;最小化处理器之间的最大距离。由于每个处理器的通信通道数量有限,因此精心规划的布局可以最大限度地减少消息交换的开销。我们提出了一种遗传算法(GA)的PCP方法。我们的技术使用基于突变的遗传算法,这是一个通过分析以前的解决方案和有效的数据表示来生成模式的函数。在这个问题上,我们的方法已被证明优于其他已发表的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying a mutation-based genetic algorithm to processor configuration problems
The processor configuration problem (PCP) is a constraint optimization problem. The task is to link up a finite set of processors into a network; minimizing the maximum distance between processors. Since each processor has a limited number of communication channels, a carefully planned layout could minimize the overhead for message switching. We present a genetic algorithm (GA) approach to the PCP. Our technique uses a mutation based GA, a function that produces schemata by analyzing previous solutions and an effective data representation. Our approach has been shown to outperform other published techniques in this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信