无套利边界的情景和财务优化

Alois Geyer, M. Hanke, Alex Weissensteiner
{"title":"无套利边界的情景和财务优化","authors":"Alois Geyer, M. Hanke, Alex Weissensteiner","doi":"10.2139/ssrn.1927222","DOIUrl":null,"url":null,"abstract":"We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial optimization. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities will always exist. No-arbitrage bounds are derived in closed form for a given covariance matrix using the least possible number of scenarios. The same setting is also used in an algorithm to generate discrete scenarios and trees. Numerical results from solving two-stage asset allocation problems indicate that even for minimal tree size very accurate results can be obtained.","PeriodicalId":366327,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-Arbitrage Bounds for Scenarios and Financial Optimization\",\"authors\":\"Alois Geyer, M. Hanke, Alex Weissensteiner\",\"doi\":\"10.2139/ssrn.1927222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial optimization. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities will always exist. No-arbitrage bounds are derived in closed form for a given covariance matrix using the least possible number of scenarios. The same setting is also used in an algorithm to generate discrete scenarios and trees. Numerical results from solving two-stage asset allocation problems indicate that even for minimal tree size very accurate results can be obtained.\",\"PeriodicalId\":366327,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1927222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1927222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了期望超额收益的无套利边界,以生成用于金融优化的场景。边界允许区分三个区域:一个是永远不存在套利机会的区域,第二个是可能存在套利机会的区域,第三个是永远存在套利机会的区域。对于给定的协方差矩阵,使用尽可能少的情形,以封闭形式导出无套利边界。在生成离散场景和树的算法中也使用相同的设置。求解两阶段资产配置问题的数值结果表明,即使树形最小,也能得到非常精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-Arbitrage Bounds for Scenarios and Financial Optimization
We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial optimization. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities will always exist. No-arbitrage bounds are derived in closed form for a given covariance matrix using the least possible number of scenarios. The same setting is also used in an algorithm to generate discrete scenarios and trees. Numerical results from solving two-stage asset allocation problems indicate that even for minimal tree size very accurate results can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信