基于深度学习的无构造复杂地质反演低频模型构建

Tengku Mohd Syazwan Tengku Hassan, C. S. Lee, R. Bekti, J. Ting
{"title":"基于深度学习的无构造复杂地质反演低频模型构建","authors":"Tengku Mohd Syazwan Tengku Hassan, C. S. Lee, R. Bekti, J. Ting","doi":"10.3997/2214-4609.202113297","DOIUrl":null,"url":null,"abstract":"Summary The conventional low frequency model (LFM) have limitations: uncertainty of spatial variability away from the wells, the uncertainty of the structural model and stratigraphic architecture. It is also challenging to build complex geology structural model. We propose using Deep Feed-forward Neural Network (DFNN) with attributes from seismic partial stacks and seismic velocity to create LFM of elastic properties for Constrained Sparse Spike Inversion. The methodology incorporates training of well curves, additional information from seismic partial stacks and trend from seismic velocity and wells. It has shorter turnaround by not having to include structural model, and is suitable for complex geological settings.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building low frequency model with Deep Learning for seismic inversion in complex geology without structural model\",\"authors\":\"Tengku Mohd Syazwan Tengku Hassan, C. S. Lee, R. Bekti, J. Ting\",\"doi\":\"10.3997/2214-4609.202113297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The conventional low frequency model (LFM) have limitations: uncertainty of spatial variability away from the wells, the uncertainty of the structural model and stratigraphic architecture. It is also challenging to build complex geology structural model. We propose using Deep Feed-forward Neural Network (DFNN) with attributes from seismic partial stacks and seismic velocity to create LFM of elastic properties for Constrained Sparse Spike Inversion. The methodology incorporates training of well curves, additional information from seismic partial stacks and trend from seismic velocity and wells. It has shorter turnaround by not having to include structural model, and is suitable for complex geological settings.\",\"PeriodicalId\":265130,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202113297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的低频模型(LFM)存在局限性:井外空间变异性的不确定性、构造模式和地层构型的不确定性。复杂地质构造模型的建立也是一个挑战。提出了基于地震部分叠加和地震速度属性的深度前馈神经网络(Deep feedforward Neural Network, DFNN)来建立约束稀疏尖峰反演的弹性属性LFM。该方法结合了井曲线的训练、地震部分叠加的附加信息以及地震速度和井的趋势。它不需要包括构造模型,周期短,适用于复杂的地质环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building low frequency model with Deep Learning for seismic inversion in complex geology without structural model
Summary The conventional low frequency model (LFM) have limitations: uncertainty of spatial variability away from the wells, the uncertainty of the structural model and stratigraphic architecture. It is also challenging to build complex geology structural model. We propose using Deep Feed-forward Neural Network (DFNN) with attributes from seismic partial stacks and seismic velocity to create LFM of elastic properties for Constrained Sparse Spike Inversion. The methodology incorporates training of well curves, additional information from seismic partial stacks and trend from seismic velocity and wells. It has shorter turnaround by not having to include structural model, and is suitable for complex geological settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信