基于som的说话人聚类的分段K-Means初始化

O. Ben-Harush, I. Lapidot, H. Guterman
{"title":"基于som的说话人聚类的分段K-Means初始化","authors":"O. Ben-Harush, I. Lapidot, H. Guterman","doi":"10.21437/Interspeech.2008-4","DOIUrl":null,"url":null,"abstract":"A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.","PeriodicalId":224749,"journal":{"name":"2008 50th International Symposium ELMAR","volume":"31 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Segmental K-Means initialization for SOM-based speaker clustering\",\"authors\":\"O. Ben-Harush, I. Lapidot, H. Guterman\",\"doi\":\"10.21437/Interspeech.2008-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.\",\"PeriodicalId\":224749,\"journal\":{\"name\":\"2008 50th International Symposium ELMAR\",\"volume\":\"31 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 50th International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/Interspeech.2008-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 50th International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2008-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种说话人聚类应用中数据初始分配的新方法。该方法在基于竞争学习之前采用分段k-均值聚类算法。聚类系统依赖于自组织映射(SOM)作为说话人建模和似然估计。使用NIST标准对LDC CALLHOME美语语音语料库中的108个两个人对话进行了性能评估,结果表明,相对于随机初始化的聚类系统,聚类错误率(CER)提高了20%-30%。该算法显著减少了迭代次数,提高了聚类系统的速度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmental K-Means initialization for SOM-based speaker clustering
A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信