O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen
{"title":"Kinect = IMU ?学习MIMO信号映射自动转换跨传感器模态的活动识别系统","authors":"O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen","doi":"10.1109/ISWC.2012.17","DOIUrl":null,"url":null,"abstract":"We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities\",\"authors\":\"O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen\",\"doi\":\"10.1109/ISWC.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.\",\"PeriodicalId\":190627,\"journal\":{\"name\":\"2012 16th International Symposium on Wearable Computers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWC.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities
We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.