Kinect = IMU ?学习MIMO信号映射自动转换跨传感器模态的活动识别系统

O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen
{"title":"Kinect = IMU ?学习MIMO信号映射自动转换跨传感器模态的活动识别系统","authors":"O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen","doi":"10.1109/ISWC.2012.17","DOIUrl":null,"url":null,"abstract":"We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities\",\"authors\":\"O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen\",\"doi\":\"10.1109/ISWC.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.\",\"PeriodicalId\":190627,\"journal\":{\"name\":\"2012 16th International Symposium on Wearable Computers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWC.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们提出了一种方法来自动转换预先存在的活动识别系统,为源传感器域S设计,使其能够在新发现的目标传感器域T上运行,可能是不同的模态。首先,我们使用MIMO系统识别技术获得一个将S信号映射到t的函数,然后使用该映射在传感器域上翻译识别系统。我们在一个基于视觉的骨骼跟踪系统(Kinect)和惯性测量单元(imu)之间转换的5类手势识别问题中演示了该方法。在这种情况下,只需一个手势(3秒)就可以学会适当的映射。Kinect→IMU或IMU→Kinect转换后的精度比同一肢体的基线低4%。跨模式转换和邻肢转换的准确率比基线低8%。我们讨论了误差的来源和改进的方法。该方法与传感器模态无关。它支持多模态活动识别和更灵活的现实世界活动识别系统部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities
We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信