变形无人机定位与悬停机动跟踪

Allen C. Hurst, A. Wickenheiser, Ephrahim Garcia
{"title":"变形无人机定位与悬停机动跟踪","authors":"Allen C. Hurst, A. Wickenheiser, Ephrahim Garcia","doi":"10.1109/PLANS.2008.4570044","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle control requires knowledge of the vehicle's states that often can only be estimated using sensor measurements. Several sensor types are typically used for the estimation process and each type often has its own sensing characteristics. This paper considers a novel morphing unmanned aerial vehicle (UAV) that is capable of changing its configuration in-flight and using aerodynamic forces to perform a perching maneuver. This maneuver could allow the UAV to perform planted landings and enable the vehicle to land in new locations, such as on building rooftops. However, this task requires the system controller to have accurate knowledge of vehicle states, especially with respect to the landing location. Visual sensors are required for identification of the landing site and to provide the relative positioning information that is critical for autonomous landings when uncertainty exists in the landing coordinates. Such information is unavailable from either a global navigation satellite system (GNSS) or inertial measurements to sufficient accuracy. The key objective of this research is to develop a foundation for the control of an aircraft that is highly nonlinear. This paper investigates the use of a set of linear motion models to represent the full range of nonlinear dynamics for an aircraft performing a perching maneuver. Simulation data are presented and their results discussed.","PeriodicalId":446381,"journal":{"name":"2008 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Localization and perching maneuver tracking for a morphing UAV\",\"authors\":\"Allen C. Hurst, A. Wickenheiser, Ephrahim Garcia\",\"doi\":\"10.1109/PLANS.2008.4570044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle control requires knowledge of the vehicle's states that often can only be estimated using sensor measurements. Several sensor types are typically used for the estimation process and each type often has its own sensing characteristics. This paper considers a novel morphing unmanned aerial vehicle (UAV) that is capable of changing its configuration in-flight and using aerodynamic forces to perform a perching maneuver. This maneuver could allow the UAV to perform planted landings and enable the vehicle to land in new locations, such as on building rooftops. However, this task requires the system controller to have accurate knowledge of vehicle states, especially with respect to the landing location. Visual sensors are required for identification of the landing site and to provide the relative positioning information that is critical for autonomous landings when uncertainty exists in the landing coordinates. Such information is unavailable from either a global navigation satellite system (GNSS) or inertial measurements to sufficient accuracy. The key objective of this research is to develop a foundation for the control of an aircraft that is highly nonlinear. This paper investigates the use of a set of linear motion models to represent the full range of nonlinear dynamics for an aircraft performing a perching maneuver. Simulation data are presented and their results discussed.\",\"PeriodicalId\":446381,\"journal\":{\"name\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2008.4570044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2008.4570044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动驾驶汽车控制需要了解车辆的状态,而这通常只能通过传感器测量来估计。几种传感器类型通常用于估计过程,每种类型通常都有自己的传感特性。本文研究了一种新型的变形无人机(UAV),该无人机能够在飞行中改变其构型并利用气动力进行栖息机动。这种机动可以允许无人机执行种植着陆并使车辆能够降落在新的位置,例如在建筑物屋顶上。然而,这项任务要求系统控制器对飞行器的状态有准确的了解,尤其是在着陆位置方面。当着陆坐标存在不确定性时,需要视觉传感器来识别着陆点并提供相对定位信息,这对自主着陆至关重要。无论是全球导航卫星系统(GNSS)还是惯性测量都无法获得足够精确的此类信息。本研究的主要目的是为高度非线性飞机的控制奠定基础。本文研究了使用一组线性运动模型来表示执行悬停机动的飞机的全部非线性动力学。给出了仿真数据,并讨论了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization and perching maneuver tracking for a morphing UAV
Autonomous vehicle control requires knowledge of the vehicle's states that often can only be estimated using sensor measurements. Several sensor types are typically used for the estimation process and each type often has its own sensing characteristics. This paper considers a novel morphing unmanned aerial vehicle (UAV) that is capable of changing its configuration in-flight and using aerodynamic forces to perform a perching maneuver. This maneuver could allow the UAV to perform planted landings and enable the vehicle to land in new locations, such as on building rooftops. However, this task requires the system controller to have accurate knowledge of vehicle states, especially with respect to the landing location. Visual sensors are required for identification of the landing site and to provide the relative positioning information that is critical for autonomous landings when uncertainty exists in the landing coordinates. Such information is unavailable from either a global navigation satellite system (GNSS) or inertial measurements to sufficient accuracy. The key objective of this research is to develop a foundation for the control of an aircraft that is highly nonlinear. This paper investigates the use of a set of linear motion models to represent the full range of nonlinear dynamics for an aircraft performing a perching maneuver. Simulation data are presented and their results discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信