SF6分子对称性点群抽象表示的确定

M. Bhuyan, Chandra Chutia
{"title":"SF6分子对称性点群抽象表示的确定","authors":"M. Bhuyan, Chandra Chutia","doi":"10.22147/JUSPS-B/301001","DOIUrl":null,"url":null,"abstract":"The symmetry present in molecules is a fundamental concept in Chemistry. Group Theory is an extremely powerful tool which, in spite of abstractness provides the systematic treatment of symmetry of molecules that simplifies the process of obtaining a variety of information about molecules. Molecules are classified according to their symmetry properties. In this paper, analyzing all the symmetry operations as well as symmetry elements of Sulphur-hexa–floride (SF6) molecule, the authors determine the point group and its abstract presentation as 〈 , | α2 = β4 = (αβ)6 = 1〉 .","PeriodicalId":283969,"journal":{"name":"Journal of Ultra Scientist of Physical Sciences Section B","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of Abstract presentation of the point group of the symmetries of SF6 molecule\",\"authors\":\"M. Bhuyan, Chandra Chutia\",\"doi\":\"10.22147/JUSPS-B/301001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetry present in molecules is a fundamental concept in Chemistry. Group Theory is an extremely powerful tool which, in spite of abstractness provides the systematic treatment of symmetry of molecules that simplifies the process of obtaining a variety of information about molecules. Molecules are classified according to their symmetry properties. In this paper, analyzing all the symmetry operations as well as symmetry elements of Sulphur-hexa–floride (SF6) molecule, the authors determine the point group and its abstract presentation as 〈 , | α2 = β4 = (αβ)6 = 1〉 .\",\"PeriodicalId\":283969,\"journal\":{\"name\":\"Journal of Ultra Scientist of Physical Sciences Section B\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ultra Scientist of Physical Sciences Section B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22147/JUSPS-B/301001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultra Scientist of Physical Sciences Section B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22147/JUSPS-B/301001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分子的对称性是化学中的一个基本概念。群论是一个非常强大的工具,尽管它是抽象的,但它提供了对分子对称性的系统处理,简化了获取分子各种信息的过程。分子是根据它们的对称性分类的。本文分析了六氟化硫(SF6)分子的所有对称操作和对称元素,确定了点群及其抽象表示为<,| α2 = β4 = (αβ)6 = 1 >。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Abstract presentation of the point group of the symmetries of SF6 molecule
The symmetry present in molecules is a fundamental concept in Chemistry. Group Theory is an extremely powerful tool which, in spite of abstractness provides the systematic treatment of symmetry of molecules that simplifies the process of obtaining a variety of information about molecules. Molecules are classified according to their symmetry properties. In this paper, analyzing all the symmetry operations as well as symmetry elements of Sulphur-hexa–floride (SF6) molecule, the authors determine the point group and its abstract presentation as 〈 , | α2 = β4 = (αβ)6 = 1〉 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信