基于可解释方法的深度网络对EEG数据的解释

Chen Cui, Y. Zhang, Shenghua Zhong
{"title":"基于可解释方法的深度网络对EEG数据的解释","authors":"Chen Cui, Y. Zhang, Shenghua Zhong","doi":"10.1109/CBMS55023.2022.00037","DOIUrl":null,"url":null,"abstract":"Despite achieving success in many domains, deep learning models remain mostly black boxes. However, understanding the reasons behind predictions is quite important in assessing trust, which is fundamental in the EEG analysis task. In this work, we propose to use two representative explanation approaches, including LIME and Grad-CAM, to explain the predictions of a simple convolutional neural network on an EEG-based emotional brain-computer interface. Our results demonstrate the interpretability approaches provide the understanding of which features better discriminate the target emotions and provide insights into the neural processes involved in the model learned behaviors.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explanations of Deep Networks on EEG Data via Interpretable Approaches\",\"authors\":\"Chen Cui, Y. Zhang, Shenghua Zhong\",\"doi\":\"10.1109/CBMS55023.2022.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite achieving success in many domains, deep learning models remain mostly black boxes. However, understanding the reasons behind predictions is quite important in assessing trust, which is fundamental in the EEG analysis task. In this work, we propose to use two representative explanation approaches, including LIME and Grad-CAM, to explain the predictions of a simple convolutional neural network on an EEG-based emotional brain-computer interface. Our results demonstrate the interpretability approaches provide the understanding of which features better discriminate the target emotions and provide insights into the neural processes involved in the model learned behaviors.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管在许多领域取得了成功,但深度学习模型仍然大多是黑盒子。然而,理解预测背后的原因对于评估信任是非常重要的,这是脑电图分析任务的基础。在这项工作中,我们建议使用两种具有代表性的解释方法,包括LIME和Grad-CAM,来解释基于脑电图的情感脑机接口上简单卷积神经网络的预测。我们的研究结果表明,可解释性方法提供了对哪些特征更好地区分目标情绪的理解,并提供了对模型学习行为中涉及的神经过程的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explanations of Deep Networks on EEG Data via Interpretable Approaches
Despite achieving success in many domains, deep learning models remain mostly black boxes. However, understanding the reasons behind predictions is quite important in assessing trust, which is fundamental in the EEG analysis task. In this work, we propose to use two representative explanation approaches, including LIME and Grad-CAM, to explain the predictions of a simple convolutional neural network on an EEG-based emotional brain-computer interface. Our results demonstrate the interpretability approaches provide the understanding of which features better discriminate the target emotions and provide insights into the neural processes involved in the model learned behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信