R. Yazicigil, Tanbir Haque, Michael R. Whalen, Jeffrey Yuan, John Wright, P. Kinget
{"title":"19.4利用正交模拟-信息转换器压缩采样的2.7- 3.7 ghz快速干涉检测器","authors":"R. Yazicigil, Tanbir Haque, Michael R. Whalen, Jeffrey Yuan, John Wright, P. Kinget","doi":"10.1109/ISSCC.2015.7063069","DOIUrl":null,"url":null,"abstract":"Mobile data traffic (driven by video over wireless, Internet of Things and machine-to-machine communications) is predicted to grow by several orders of magnitude over the coming decades, leading to severe spectrum deficits (500MHz to 1GHz in the near to long term). In 2012 the US President's Council of Advisors on Science and Technology (PCAST) recommended sharing government spectrum from 2.7GHz to 3.7GHz for public use while advocating that future systems deliver significantly improved spectrum efficiency. Cognitive radio systems with multi-tiered shared spectrum access (MTSSA) are expected to deliver such superior efficiency over existing scheduled-access systems; they have 3 or more device tiers with different access privileges. Lower tiered `smart' devices opportunistically use the underutilized spectrum and need spectrum sensing for incumbent detection and interférer avoidance. Incumbent detection will rely on database lookup or narrowband high-sensitivity sensing. Integrated interférer detectors, on the other hand, need to be fast, wideband and energy efficient while only requiring moderate sensitivity. During designated slot boundaries (10s of us), they quickly detect the presence of a few (3 or so) large interferers over e.g., a 1GHz span (2.7 to 3.7GHz) with a 20MHz RBW (i.e. 50 bins) so that the carrier-aggregating receiver can be reconfigured on a frame (10s of ms) or even slot (100s of us) basis.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"19.4 A 2.7-to-3.7GHz rapid interferer detector exploiting compressed sampling with a quadrature analog-to-information converter\",\"authors\":\"R. Yazicigil, Tanbir Haque, Michael R. Whalen, Jeffrey Yuan, John Wright, P. Kinget\",\"doi\":\"10.1109/ISSCC.2015.7063069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile data traffic (driven by video over wireless, Internet of Things and machine-to-machine communications) is predicted to grow by several orders of magnitude over the coming decades, leading to severe spectrum deficits (500MHz to 1GHz in the near to long term). In 2012 the US President's Council of Advisors on Science and Technology (PCAST) recommended sharing government spectrum from 2.7GHz to 3.7GHz for public use while advocating that future systems deliver significantly improved spectrum efficiency. Cognitive radio systems with multi-tiered shared spectrum access (MTSSA) are expected to deliver such superior efficiency over existing scheduled-access systems; they have 3 or more device tiers with different access privileges. Lower tiered `smart' devices opportunistically use the underutilized spectrum and need spectrum sensing for incumbent detection and interférer avoidance. Incumbent detection will rely on database lookup or narrowband high-sensitivity sensing. Integrated interférer detectors, on the other hand, need to be fast, wideband and energy efficient while only requiring moderate sensitivity. During designated slot boundaries (10s of us), they quickly detect the presence of a few (3 or so) large interferers over e.g., a 1GHz span (2.7 to 3.7GHz) with a 20MHz RBW (i.e. 50 bins) so that the carrier-aggregating receiver can be reconfigured on a frame (10s of ms) or even slot (100s of us) basis.\",\"PeriodicalId\":188403,\"journal\":{\"name\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2015.7063069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
19.4 A 2.7-to-3.7GHz rapid interferer detector exploiting compressed sampling with a quadrature analog-to-information converter
Mobile data traffic (driven by video over wireless, Internet of Things and machine-to-machine communications) is predicted to grow by several orders of magnitude over the coming decades, leading to severe spectrum deficits (500MHz to 1GHz in the near to long term). In 2012 the US President's Council of Advisors on Science and Technology (PCAST) recommended sharing government spectrum from 2.7GHz to 3.7GHz for public use while advocating that future systems deliver significantly improved spectrum efficiency. Cognitive radio systems with multi-tiered shared spectrum access (MTSSA) are expected to deliver such superior efficiency over existing scheduled-access systems; they have 3 or more device tiers with different access privileges. Lower tiered `smart' devices opportunistically use the underutilized spectrum and need spectrum sensing for incumbent detection and interférer avoidance. Incumbent detection will rely on database lookup or narrowband high-sensitivity sensing. Integrated interférer detectors, on the other hand, need to be fast, wideband and energy efficient while only requiring moderate sensitivity. During designated slot boundaries (10s of us), they quickly detect the presence of a few (3 or so) large interferers over e.g., a 1GHz span (2.7 to 3.7GHz) with a 20MHz RBW (i.e. 50 bins) so that the carrier-aggregating receiver can be reconfigured on a frame (10s of ms) or even slot (100s of us) basis.