基于2D-ConvLSTM的脉冲型OTFS双色散信道短期预测

A. Pfadler, Peter Jung, Vlerar Shala, Martin Kasparick, M. Adrat, Sławomir Stańczak
{"title":"基于2D-ConvLSTM的脉冲型OTFS双色散信道短期预测","authors":"A. Pfadler, Peter Jung, Vlerar Shala, Martin Kasparick, M. Adrat, Sławomir Stańczak","doi":"10.1109/iccworkshops53468.2022.9814574","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the ability of recurrent neural networks to perform channel predictions for orthogonal time frequency and space modulation (OTFS). Due to 2D orthogonal precoding, OTFS promises high time-frequency (TF) diversity which turns out to enable robust communication even in high mobility scenarios. To exploit high diversity gain, knowledge of accurate channel state information (CSI) is essential. In OTFS, the CSI can directly be estimated in the delay-Doppler (DD) domain. Vehicular channels however are considered to be doubly-dispersive and therefore require a channel estimation on a per frame basis. This motivates the investigation of short-term channel prediction. We propose a scheme to estimate the channel coefficients collected on vehicular trajectory and predict them into the future using 2D-convolutional long short-term memory network (2D-ConvLSTM). First numerical results show that a prediction of the channel coefficients is possible.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Short-Term Prediction of Doubly-Dispersive Channels for Pulse-Shaped OTFS using 2D-ConvLSTM\",\"authors\":\"A. Pfadler, Peter Jung, Vlerar Shala, Martin Kasparick, M. Adrat, Sławomir Stańczak\",\"doi\":\"10.1109/iccworkshops53468.2022.9814574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the ability of recurrent neural networks to perform channel predictions for orthogonal time frequency and space modulation (OTFS). Due to 2D orthogonal precoding, OTFS promises high time-frequency (TF) diversity which turns out to enable robust communication even in high mobility scenarios. To exploit high diversity gain, knowledge of accurate channel state information (CSI) is essential. In OTFS, the CSI can directly be estimated in the delay-Doppler (DD) domain. Vehicular channels however are considered to be doubly-dispersive and therefore require a channel estimation on a per frame basis. This motivates the investigation of short-term channel prediction. We propose a scheme to estimate the channel coefficients collected on vehicular trajectory and predict them into the future using 2D-convolutional long short-term memory network (2D-ConvLSTM). First numerical results show that a prediction of the channel coefficients is possible.\",\"PeriodicalId\":102261,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccworkshops53468.2022.9814574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccworkshops53468.2022.9814574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了递归神经网络对正交时频和空间调制(OTFS)进行信道预测的能力。由于二维正交预编码,OTFS保证了高时频分集,即使在高移动场景下也能实现稳健的通信。为了获得较高的分集增益,必须了解准确的信道状态信息(CSI)。在OTFS中,CSI可以直接在延迟多普勒(DD)域中估计。然而,车载信道被认为是双频散的,因此需要在每帧的基础上进行信道估计。这激发了对短期通道预测的研究。我们提出了一种利用2d -卷积长短期记忆网络(2D-ConvLSTM)估计车辆轨迹上收集的通道系数并预测其未来的方案。首先,数值结果表明通道系数的预测是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Prediction of Doubly-Dispersive Channels for Pulse-Shaped OTFS using 2D-ConvLSTM
In this paper, we investigate the ability of recurrent neural networks to perform channel predictions for orthogonal time frequency and space modulation (OTFS). Due to 2D orthogonal precoding, OTFS promises high time-frequency (TF) diversity which turns out to enable robust communication even in high mobility scenarios. To exploit high diversity gain, knowledge of accurate channel state information (CSI) is essential. In OTFS, the CSI can directly be estimated in the delay-Doppler (DD) domain. Vehicular channels however are considered to be doubly-dispersive and therefore require a channel estimation on a per frame basis. This motivates the investigation of short-term channel prediction. We propose a scheme to estimate the channel coefficients collected on vehicular trajectory and predict them into the future using 2D-convolutional long short-term memory network (2D-ConvLSTM). First numerical results show that a prediction of the channel coefficients is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信