带转子套筒的高速IPM电机:结构设计与性能评价

Josef Binder, Mario Silvagni, S. Ferrari, B. Deusinger, A. Tonoli, G. Pellegrino
{"title":"带转子套筒的高速IPM电机:结构设计与性能评价","authors":"Josef Binder, Mario Silvagni, S. Ferrari, B. Deusinger, A. Tonoli, G. Pellegrino","doi":"10.1109/WEMDCD55819.2023.10110939","DOIUrl":null,"url":null,"abstract":"This paper deals with the structural design of sleeves for high-speed interior permanent magnet (IPM) synchronous machines. Wrapped IPM (WIPM) motors are a new player in the field of high-speed e-machines for traction, where a retaining sleeve is used to hold the magnetic poles in place against centrifugal forces, replacing the role of conventional iron bridges. The wrapping technique, originating from surface-mounted permanent magnet rotors, is believed to push speed limitations to new heights, as demanded by the increasing requirements of the automotive industry. By developing an equivalent rotor geometry of the WIPM rotor, an analytical model is formulated to evaluate the stress in the rotor and to provide a quick and intuitive tool for the sleeve design. The results are successfully validated by structural finite element analysis. Also, the output figures of a WIPM machine are compared to those of an equivalent IPM machine with iron bridges.","PeriodicalId":192269,"journal":{"name":"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed IPM Motors with Rotor Sleeve: Structural Design and Performance Evaluation\",\"authors\":\"Josef Binder, Mario Silvagni, S. Ferrari, B. Deusinger, A. Tonoli, G. Pellegrino\",\"doi\":\"10.1109/WEMDCD55819.2023.10110939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the structural design of sleeves for high-speed interior permanent magnet (IPM) synchronous machines. Wrapped IPM (WIPM) motors are a new player in the field of high-speed e-machines for traction, where a retaining sleeve is used to hold the magnetic poles in place against centrifugal forces, replacing the role of conventional iron bridges. The wrapping technique, originating from surface-mounted permanent magnet rotors, is believed to push speed limitations to new heights, as demanded by the increasing requirements of the automotive industry. By developing an equivalent rotor geometry of the WIPM rotor, an analytical model is formulated to evaluate the stress in the rotor and to provide a quick and intuitive tool for the sleeve design. The results are successfully validated by structural finite element analysis. Also, the output figures of a WIPM machine are compared to those of an equivalent IPM machine with iron bridges.\",\"PeriodicalId\":192269,\"journal\":{\"name\":\"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WEMDCD55819.2023.10110939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WEMDCD55819.2023.10110939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了高速内嵌式永磁同步电机套筒的结构设计。包裹式IPM (WIPM)电机是高速电机牵引领域的新玩家,其中使用固定套筒来固定磁极以抵抗离心力,取代传统铁桥的作用。这种包装技术源于表面贴装的永磁转子,据信将速度限制推向新的高度,以满足汽车行业日益增长的需求。通过建立WIPM转子的等效几何形状,建立了转子应力分析模型,为套筒设计提供了一种快速、直观的工具。通过结构有限元分析,验证了结果的正确性。此外,还将WIPM机器的输出数据与具有铁桥的等效IPM机器的输出数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed IPM Motors with Rotor Sleeve: Structural Design and Performance Evaluation
This paper deals with the structural design of sleeves for high-speed interior permanent magnet (IPM) synchronous machines. Wrapped IPM (WIPM) motors are a new player in the field of high-speed e-machines for traction, where a retaining sleeve is used to hold the magnetic poles in place against centrifugal forces, replacing the role of conventional iron bridges. The wrapping technique, originating from surface-mounted permanent magnet rotors, is believed to push speed limitations to new heights, as demanded by the increasing requirements of the automotive industry. By developing an equivalent rotor geometry of the WIPM rotor, an analytical model is formulated to evaluate the stress in the rotor and to provide a quick and intuitive tool for the sleeve design. The results are successfully validated by structural finite element analysis. Also, the output figures of a WIPM machine are compared to those of an equivalent IPM machine with iron bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信