基于深度神经网络的下行链路IP吞吐量建模与预测

Jianhang Zhu, Jiajie Huang, Jie Gong, Zhen Liu, Zixu Wang, Yang Li, Yibin Kang
{"title":"基于深度神经网络的下行链路IP吞吐量建模与预测","authors":"Jianhang Zhu, Jiajie Huang, Jie Gong, Zhen Liu, Zixu Wang, Yang Li, Yibin Kang","doi":"10.1109/ISWCS56560.2022.9940405","DOIUrl":null,"url":null,"abstract":"With the development of machine learning, deep neural networks are widely used in wireless communication systems for modeling and prediction. Neural networks have powerful data fitting capability and are suitable for complex multi-factor communication scenarios. The downlink IP throughput, defined as the payload data volume on IP level per elapsed time unit on the Uu interface, is an important performance metric for the quality of service experienced by the end user. In this paper, we propose a deep neural network-based modeling approach to predict the downlink IP throughput. Real-trace data of cellular systems, i.e., user-uploaded data including physical layer measurement, user scheduling information, user throughput and so on, are used for model training and testing. The experimental results show that our proposed model performs well for downlink IP throughput prediction.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downlink IP Throughput Modeling and Prediction with Deep Neural Networks\",\"authors\":\"Jianhang Zhu, Jiajie Huang, Jie Gong, Zhen Liu, Zixu Wang, Yang Li, Yibin Kang\",\"doi\":\"10.1109/ISWCS56560.2022.9940405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of machine learning, deep neural networks are widely used in wireless communication systems for modeling and prediction. Neural networks have powerful data fitting capability and are suitable for complex multi-factor communication scenarios. The downlink IP throughput, defined as the payload data volume on IP level per elapsed time unit on the Uu interface, is an important performance metric for the quality of service experienced by the end user. In this paper, we propose a deep neural network-based modeling approach to predict the downlink IP throughput. Real-trace data of cellular systems, i.e., user-uploaded data including physical layer measurement, user scheduling information, user throughput and so on, are used for model training and testing. The experimental results show that our proposed model performs well for downlink IP throughput prediction.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习技术的发展,深度神经网络被广泛应用于无线通信系统的建模和预测。神经网络具有强大的数据拟合能力,适用于复杂的多因素通信场景。下行链路IP吞吐量,定义为Uu接口上每经过时间单位的IP级别上的有效负载数据量,是衡量最终用户体验到的服务质量的重要性能指标。在本文中,我们提出了一种基于深度神经网络的建模方法来预测下行链路IP吞吐量。蜂窝系统的实时跟踪数据,即用户上传的数据,包括物理层测量、用户调度信息、用户吞吐量等,用于模型的训练和测试。实验结果表明,该模型能很好地预测下行链路IP吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downlink IP Throughput Modeling and Prediction with Deep Neural Networks
With the development of machine learning, deep neural networks are widely used in wireless communication systems for modeling and prediction. Neural networks have powerful data fitting capability and are suitable for complex multi-factor communication scenarios. The downlink IP throughput, defined as the payload data volume on IP level per elapsed time unit on the Uu interface, is an important performance metric for the quality of service experienced by the end user. In this paper, we propose a deep neural network-based modeling approach to predict the downlink IP throughput. Real-trace data of cellular systems, i.e., user-uploaded data including physical layer measurement, user scheduling information, user throughput and so on, are used for model training and testing. The experimental results show that our proposed model performs well for downlink IP throughput prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信