{"title":"模式演化的马尔可夫链模型及其在平稳分布中的应用","authors":"Yu-an Zhang, Qinglian Ma, Hiroshi Furutani","doi":"10.1109/ICNC.2014.6975839","DOIUrl":null,"url":null,"abstract":"Markov chain is a powerful tool for analyzing the evolutionary process of a stochastic system. To select GA parameters such as mutation rate and population size are important in practical application. The value of this parameter has a big effect on the viewpoint of Markov chain. In this paper, we consider properties of stationary distribution with mutation in GAs. We used Markov chain to calculate distribution. If the population is in linkage equilibrium, we used Wright-Fisher model to get the distribution of first order schema. We define the mixing time is the time to arrive stationary distribution. We adopt Hunter's mixing time to estimate the mixing time Tm of the first order schema.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov chain model of schema evolution and its application to stationary distribution\",\"authors\":\"Yu-an Zhang, Qinglian Ma, Hiroshi Furutani\",\"doi\":\"10.1109/ICNC.2014.6975839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov chain is a powerful tool for analyzing the evolutionary process of a stochastic system. To select GA parameters such as mutation rate and population size are important in practical application. The value of this parameter has a big effect on the viewpoint of Markov chain. In this paper, we consider properties of stationary distribution with mutation in GAs. We used Markov chain to calculate distribution. If the population is in linkage equilibrium, we used Wright-Fisher model to get the distribution of first order schema. We define the mixing time is the time to arrive stationary distribution. We adopt Hunter's mixing time to estimate the mixing time Tm of the first order schema.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Markov chain model of schema evolution and its application to stationary distribution
Markov chain is a powerful tool for analyzing the evolutionary process of a stochastic system. To select GA parameters such as mutation rate and population size are important in practical application. The value of this parameter has a big effect on the viewpoint of Markov chain. In this paper, we consider properties of stationary distribution with mutation in GAs. We used Markov chain to calculate distribution. If the population is in linkage equilibrium, we used Wright-Fisher model to get the distribution of first order schema. We define the mixing time is the time to arrive stationary distribution. We adopt Hunter's mixing time to estimate the mixing time Tm of the first order schema.