预测H和e染色食管标本的暗场图像

Berfin Arli, O. Dinc, Merve Türker-Burhan, S. Tozburun
{"title":"预测H和e染色食管标本的暗场图像","authors":"Berfin Arli, O. Dinc, Merve Türker-Burhan, S. Tozburun","doi":"10.1117/12.2672202","DOIUrl":null,"url":null,"abstract":"The potential of laser-induced thermal therapy can be reassessed in treating abnormal mucosal tissues with advances in fiber optics, diode laser technology, and optical imaging modalities. In this context, studies optimizing a large parameter matrix (e.g., laser power, surface scanning speed, beam diameter, and irradiation duration) may be of interest. This study presents an artificial intelligence algorithm utilizing a generative adversarial network that predicts dark-field microscopy images from bright-field images of H&E-stained esophageal specimens. The calculated structural similarity index measurement between ground truth and the predicted dark-field image reaches an average of 74%. Also, the mean squared error is 0.7%.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"5 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting dark-field images of H and E-stained esophageal specimens\",\"authors\":\"Berfin Arli, O. Dinc, Merve Türker-Burhan, S. Tozburun\",\"doi\":\"10.1117/12.2672202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of laser-induced thermal therapy can be reassessed in treating abnormal mucosal tissues with advances in fiber optics, diode laser technology, and optical imaging modalities. In this context, studies optimizing a large parameter matrix (e.g., laser power, surface scanning speed, beam diameter, and irradiation duration) may be of interest. This study presents an artificial intelligence algorithm utilizing a generative adversarial network that predicts dark-field microscopy images from bright-field images of H&E-stained esophageal specimens. The calculated structural similarity index measurement between ground truth and the predicted dark-field image reaches an average of 74%. Also, the mean squared error is 0.7%.\",\"PeriodicalId\":278089,\"journal\":{\"name\":\"European Conference on Biomedical Optics\",\"volume\":\"5 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Biomedical Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2672202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着光纤、二极管激光技术和光学成像方式的进步,激光诱导热疗法在治疗异常粘膜组织方面的潜力可以重新评估。在这种情况下,优化大参数矩阵(如激光功率、表面扫描速度、光束直径和照射时间)的研究可能会引起人们的兴趣。本研究提出了一种利用生成式对抗网络的人工智能算法,该算法可以从h&e染色食管标本的明场图像中预测暗场显微镜图像。计算得到的地面真值与预测暗场图像的结构相似指数测量值平均达到74%。此外,均方误差为0.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting dark-field images of H and E-stained esophageal specimens
The potential of laser-induced thermal therapy can be reassessed in treating abnormal mucosal tissues with advances in fiber optics, diode laser technology, and optical imaging modalities. In this context, studies optimizing a large parameter matrix (e.g., laser power, surface scanning speed, beam diameter, and irradiation duration) may be of interest. This study presents an artificial intelligence algorithm utilizing a generative adversarial network that predicts dark-field microscopy images from bright-field images of H&E-stained esophageal specimens. The calculated structural similarity index measurement between ground truth and the predicted dark-field image reaches an average of 74%. Also, the mean squared error is 0.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信