通过控制量子点组件的维数、能量景观和激子密度来控制激子扩散的空间范围(演讲记录)

K. Munechika, Jiye Lee, D. Simatos, M. Melli, S. Whitelam, A. Weber-Bargioni
{"title":"通过控制量子点组件的维数、能量景观和激子密度来控制激子扩散的空间范围(演讲记录)","authors":"K. Munechika, Jiye Lee, D. Simatos, M. Melli, S. Whitelam, A. Weber-Bargioni","doi":"10.1117/12.2194334","DOIUrl":null,"url":null,"abstract":"Semiconductor quantum dots are considered a promising material class with the potential of highly tunable and novel optoelectronic properties. Recent research efforts have shown that quantum dots, assembled in well-ordered 1D, 2D and 3D geometries have the potential to funnel excitons via Forster Resonance Energy Transfer (FRET) through the nanocrystal composite. Understanding the inter quantum dot coupling and the spatial extend of exciton diffusion is key to design material for the deliberate control of energy transport through them. In this regard, we study Förster Resonance Energy Transfer (FRET) between CdSe quantum dots in a well-defined 2D assembly with different interparticle distances. We then examine the spatial extent of FRET coupling between quantum dots using confocal fluorescence hyperspectral imaging. We spatially map out the degree of the coupling between the neighboring quantum dots by exciting the quantum dots at a known location and collect fluorescence signals at various distances relative to the excitation. We show that by varying the dimensionality, energy landscape, and exciton density, we are able to manipulate the spatial extent of exciton diffusion through the QDs assembly. Modeling was done in conjunction the experiments and well described our observations in each case. The results provide in-depth understanding into the spatial extent of exciton diffusion via FRET through ordered quantum dot assemblies and provide useful insights in engineering nano-building structures to direct and enhance the direction of the exciton transport to a preferred sites.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating the spatial extent of the exciton diffusion through QDs assembly by controlling dimensionality, energy landscape, and exciton density (Presentation Recording)\",\"authors\":\"K. Munechika, Jiye Lee, D. Simatos, M. Melli, S. Whitelam, A. Weber-Bargioni\",\"doi\":\"10.1117/12.2194334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor quantum dots are considered a promising material class with the potential of highly tunable and novel optoelectronic properties. Recent research efforts have shown that quantum dots, assembled in well-ordered 1D, 2D and 3D geometries have the potential to funnel excitons via Forster Resonance Energy Transfer (FRET) through the nanocrystal composite. Understanding the inter quantum dot coupling and the spatial extend of exciton diffusion is key to design material for the deliberate control of energy transport through them. In this regard, we study Förster Resonance Energy Transfer (FRET) between CdSe quantum dots in a well-defined 2D assembly with different interparticle distances. We then examine the spatial extent of FRET coupling between quantum dots using confocal fluorescence hyperspectral imaging. We spatially map out the degree of the coupling between the neighboring quantum dots by exciting the quantum dots at a known location and collect fluorescence signals at various distances relative to the excitation. We show that by varying the dimensionality, energy landscape, and exciton density, we are able to manipulate the spatial extent of exciton diffusion through the QDs assembly. Modeling was done in conjunction the experiments and well described our observations in each case. The results provide in-depth understanding into the spatial extent of exciton diffusion via FRET through ordered quantum dot assemblies and provide useful insights in engineering nano-building structures to direct and enhance the direction of the exciton transport to a preferred sites.\",\"PeriodicalId\":432358,\"journal\":{\"name\":\"SPIE NanoScience + Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2194334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2194334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半导体量子点被认为是一种具有高度可调谐和新型光电特性的有前途的材料。最近的研究表明,以有序的1D、2D和3D几何形状组装的量子点有可能通过纳米晶体复合材料的福斯特共振能量转移(FRET)来输送激子。理解量子点间耦合和激子扩散的空间扩展是设计材料以有意控制通过它们的能量输运的关键。在这方面,我们研究了在定义良好的二维组件中具有不同粒子间距离的CdSe量子点之间的Förster共振能量转移(FRET)。然后,我们使用共聚焦荧光高光谱成像检查量子点之间FRET耦合的空间范围。我们通过在已知位置激发量子点,在空间上绘制出相邻量子点之间的耦合程度,并在相对于激发的不同距离上收集荧光信号。我们表明,通过改变维度、能量景观和激子密度,我们能够操纵激子在量子点组装中扩散的空间范围。模型是结合实验完成的,很好地描述了我们在每种情况下的观察结果。研究结果为激子通过有序量子点组装通过FRET扩散的空间范围提供了深入的理解,并为工程纳米建筑结构提供了有用的见解,以指导和增强激子传输到首选位置的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manipulating the spatial extent of the exciton diffusion through QDs assembly by controlling dimensionality, energy landscape, and exciton density (Presentation Recording)
Semiconductor quantum dots are considered a promising material class with the potential of highly tunable and novel optoelectronic properties. Recent research efforts have shown that quantum dots, assembled in well-ordered 1D, 2D and 3D geometries have the potential to funnel excitons via Forster Resonance Energy Transfer (FRET) through the nanocrystal composite. Understanding the inter quantum dot coupling and the spatial extend of exciton diffusion is key to design material for the deliberate control of energy transport through them. In this regard, we study Förster Resonance Energy Transfer (FRET) between CdSe quantum dots in a well-defined 2D assembly with different interparticle distances. We then examine the spatial extent of FRET coupling between quantum dots using confocal fluorescence hyperspectral imaging. We spatially map out the degree of the coupling between the neighboring quantum dots by exciting the quantum dots at a known location and collect fluorescence signals at various distances relative to the excitation. We show that by varying the dimensionality, energy landscape, and exciton density, we are able to manipulate the spatial extent of exciton diffusion through the QDs assembly. Modeling was done in conjunction the experiments and well described our observations in each case. The results provide in-depth understanding into the spatial extent of exciton diffusion via FRET through ordered quantum dot assemblies and provide useful insights in engineering nano-building structures to direct and enhance the direction of the exciton transport to a preferred sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信