Yu Otake, Masumi Ichien, T. Takeuchi, Akihiro Gion, S. Mikami, H. Fujiwara, H. Kawaguchi, C. Ohta, M. Yoshimoto
{"title":"基于长波标准时间码的低功耗无线传感器节点跨层设计","authors":"Yu Otake, Masumi Ichien, T. Takeuchi, Akihiro Gion, S. Mikami, H. Fujiwara, H. Kawaguchi, C. Ohta, M. Yoshimoto","doi":"10.1109/SENSORCOMM.2007.40","DOIUrl":null,"url":null,"abstract":"We propose isochronous-MAC (I-MAC) using the long-wave standard time code, and introduce cross-layer design for a low-power wireless sensor node with I-MAC. I-MAC has a periodic wakeup time synchronized with the actual time, and thus requires a precise timer. However, a frequency of a crystal oscillator varies along with temperature, from node to node. We utilize a time correction algorithm to shorten the time difference among nodes. Thereby, the preamble length in I-MAC can be minimized, which saves a communication power. For further power reduction, a low-power crystal oscillator is also proposed, as a physical-layer design. We implemented I-MAC on an off-the-shelf sensor node to estimate the power saving, and verified that I-MAC reduces 81% of the total power, compared to low power listening.","PeriodicalId":161788,"journal":{"name":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Layer Design for Low-Power Wireless Sensor Node Using Long-Wave Standard Time Code\",\"authors\":\"Yu Otake, Masumi Ichien, T. Takeuchi, Akihiro Gion, S. Mikami, H. Fujiwara, H. Kawaguchi, C. Ohta, M. Yoshimoto\",\"doi\":\"10.1109/SENSORCOMM.2007.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose isochronous-MAC (I-MAC) using the long-wave standard time code, and introduce cross-layer design for a low-power wireless sensor node with I-MAC. I-MAC has a periodic wakeup time synchronized with the actual time, and thus requires a precise timer. However, a frequency of a crystal oscillator varies along with temperature, from node to node. We utilize a time correction algorithm to shorten the time difference among nodes. Thereby, the preamble length in I-MAC can be minimized, which saves a communication power. For further power reduction, a low-power crystal oscillator is also proposed, as a physical-layer design. We implemented I-MAC on an off-the-shelf sensor node to estimate the power saving, and verified that I-MAC reduces 81% of the total power, compared to low power listening.\",\"PeriodicalId\":161788,\"journal\":{\"name\":\"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORCOMM.2007.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORCOMM.2007.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Layer Design for Low-Power Wireless Sensor Node Using Long-Wave Standard Time Code
We propose isochronous-MAC (I-MAC) using the long-wave standard time code, and introduce cross-layer design for a low-power wireless sensor node with I-MAC. I-MAC has a periodic wakeup time synchronized with the actual time, and thus requires a precise timer. However, a frequency of a crystal oscillator varies along with temperature, from node to node. We utilize a time correction algorithm to shorten the time difference among nodes. Thereby, the preamble length in I-MAC can be minimized, which saves a communication power. For further power reduction, a low-power crystal oscillator is also proposed, as a physical-layer design. We implemented I-MAC on an off-the-shelf sensor node to estimate the power saving, and verified that I-MAC reduces 81% of the total power, compared to low power listening.