热核轨迹的非递归公式

A. Ivanov, N. V. Kharuk
{"title":"热核轨迹的非递归公式","authors":"A. Ivanov, N. V. Kharuk","doi":"10.1109/DD46733.2019.9016557","DOIUrl":null,"url":null,"abstract":"The Seeley–DeWitt coefficients of a heat kernel of Laplace operator satisfy a system of equations of a special form. In this paper we present a new non-recursive formula for the diagonal part of the solution of such recurrence system, which can be used for the Laplace operator with arbitrary smooth Riemann and gauge connections and a potential.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-recursive formula for trace of heat kernel\",\"authors\":\"A. Ivanov, N. V. Kharuk\",\"doi\":\"10.1109/DD46733.2019.9016557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Seeley–DeWitt coefficients of a heat kernel of Laplace operator satisfy a system of equations of a special form. In this paper we present a new non-recursive formula for the diagonal part of the solution of such recurrence system, which can be used for the Laplace operator with arbitrary smooth Riemann and gauge connections and a potential.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

拉普拉斯算子的热核的seely - dewitt系数满足一种特殊形式的方程组。本文给出了这类递归系统对角部分解的一个新的非递归公式,该公式可用于具有任意光滑黎曼连接和规范连接的拉普拉斯算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-recursive formula for trace of heat kernel
The Seeley–DeWitt coefficients of a heat kernel of Laplace operator satisfy a system of equations of a special form. In this paper we present a new non-recursive formula for the diagonal part of the solution of such recurrence system, which can be used for the Laplace operator with arbitrary smooth Riemann and gauge connections and a potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信