基于遗传算法的多目标控制系统设计

Tung-Kuan Liu, T. Ishihara, H. Inooka
{"title":"基于遗传算法的多目标控制系统设计","authors":"Tung-Kuan Liu, T. Ishihara, H. Inooka","doi":"10.1109/SICE.1995.526959","DOIUrl":null,"url":null,"abstract":"For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiobjective control systems design by genetic algorithms\",\"authors\":\"Tung-Kuan Liu, T. Ishihara, H. Inooka\",\"doi\":\"10.1109/SICE.1995.526959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.\",\"PeriodicalId\":344374,\"journal\":{\"name\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.1995.526959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对于多目标控制系统设计,采用遗传算法求解控制系统各项性能指标的Pareto最优集。我们还提出了一种改进的多目标选择方案,并使用改进的基于秩的适应度分配。将多目标遗传算法(MGA)与避免特定极点零抵消的极点零放置算法相结合,构建了基于MATLAB的二自由度离散控制系统计算机辅助控制系统设计(CACSD)系统软件包。该系统在控制器结构和设计规范的选择上具有很大的自由度。通过一个设计实例,将遗传算法的多目标优化方法与MATLAB优化工具箱中的目标实现方法进行了比较,说明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective control systems design by genetic algorithms
For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信