多层铁电结构中的电热效应

A. Starkov, A. Anokhin, A. Es'kov, A. A. Semenov, A. Kholkin
{"title":"多层铁电结构中的电热效应","authors":"A. Starkov, A. Anokhin, A. Es'kov, A. A. Semenov, A. Kholkin","doi":"10.32603/1993-8985-2023-26-3-111-121","DOIUrl":null,"url":null,"abstract":"Introduction. Ferroelectric films are widely used for radiotechnical, microwave microelectronic, sensoric, and energy conversion purposes. Such a diverse application range demands film materials with specific electrophysical properties. For instance, while energy storage applications require materials with a high dielectric constant, energy conversion devices largely use those with a low dielectric constant. The necessary physical properties can be achieved using multicomponent ferroelectric structures, such as solid solutions, composites, and multilayer film structures. Mechanical stresses between the substrate and ferroelectric layers play an extremely important role in dielectric properties of multilayer structures.Aim. Development of a mathematical model quantifying the ferroelectric polarization, static dielectric constant, as well as pyroelectric and electrocaloric properties of multilayered ferroelectric film structures.Materials and methods. The presented model is based on the Landau–Ginzburg–Devonshire model (LGD) considering elasticity equations and using electric induction as the order parameter.Results. The developed mathematical model based on LGD provides for a quantifiable description of dielectric, pyroelectric, and electrocaloric properties of layered ferroelectric structures. This model displays the effect of the thickness ratio of polycrystalline layers and grain size distribution on the dielectric properties of films.Conclusion. The developed quantitative model demonstrates the dependence of the thickness, grain size, and stacking order of ferroelectric layers on the dielectric constant and pyroelectric coefficient of multilayered polycrystalline film structures. The presented model can be applied when optimizing the parameters of multilayer structures with respect to their application area.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocaloric Effect in Multilayer Ferroelectric Structures\",\"authors\":\"A. Starkov, A. Anokhin, A. Es'kov, A. A. Semenov, A. Kholkin\",\"doi\":\"10.32603/1993-8985-2023-26-3-111-121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Ferroelectric films are widely used for radiotechnical, microwave microelectronic, sensoric, and energy conversion purposes. Such a diverse application range demands film materials with specific electrophysical properties. For instance, while energy storage applications require materials with a high dielectric constant, energy conversion devices largely use those with a low dielectric constant. The necessary physical properties can be achieved using multicomponent ferroelectric structures, such as solid solutions, composites, and multilayer film structures. Mechanical stresses between the substrate and ferroelectric layers play an extremely important role in dielectric properties of multilayer structures.Aim. Development of a mathematical model quantifying the ferroelectric polarization, static dielectric constant, as well as pyroelectric and electrocaloric properties of multilayered ferroelectric film structures.Materials and methods. The presented model is based on the Landau–Ginzburg–Devonshire model (LGD) considering elasticity equations and using electric induction as the order parameter.Results. The developed mathematical model based on LGD provides for a quantifiable description of dielectric, pyroelectric, and electrocaloric properties of layered ferroelectric structures. This model displays the effect of the thickness ratio of polycrystalline layers and grain size distribution on the dielectric properties of films.Conclusion. The developed quantitative model demonstrates the dependence of the thickness, grain size, and stacking order of ferroelectric layers on the dielectric constant and pyroelectric coefficient of multilayered polycrystalline film structures. The presented model can be applied when optimizing the parameters of multilayer structures with respect to their application area.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2023-26-3-111-121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2023-26-3-111-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。铁电薄膜广泛应用于无线电技术、微波微电子、传感和能量转换等领域。如此多样化的应用范围要求薄膜材料具有特定的电物理性能。例如,当能量存储应用需要具有高介电常数的材料时,能量转换设备主要使用具有低介电常数的材料。使用多组分铁电结构,如固溶体、复合材料和多层薄膜结构,可以实现必要的物理性能。衬底与铁电层之间的机械应力对多层结构的介电性能起着极其重要的作用。建立了一种量化铁电极化、静态介电常数以及多层铁电薄膜结构热释电和电热特性的数学模型。材料和方法。该模型是在考虑弹性方程的Landau-Ginzburg-Devonshire模型(LGD)的基础上建立的,以电感应为阶参量。基于LGD开发的数学模型提供了层状铁电结构的介电、热释电和电热特性的可量化描述。该模型显示了多晶层厚度比和晶粒尺寸分布对薄膜介电性能的影响。所建立的定量模型证明了铁电层的厚度、晶粒尺寸和堆叠顺序与多层多晶薄膜结构的介电常数和热释电系数的关系。该模型可用于多层结构在不同应用领域的参数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocaloric Effect in Multilayer Ferroelectric Structures
Introduction. Ferroelectric films are widely used for radiotechnical, microwave microelectronic, sensoric, and energy conversion purposes. Such a diverse application range demands film materials with specific electrophysical properties. For instance, while energy storage applications require materials with a high dielectric constant, energy conversion devices largely use those with a low dielectric constant. The necessary physical properties can be achieved using multicomponent ferroelectric structures, such as solid solutions, composites, and multilayer film structures. Mechanical stresses between the substrate and ferroelectric layers play an extremely important role in dielectric properties of multilayer structures.Aim. Development of a mathematical model quantifying the ferroelectric polarization, static dielectric constant, as well as pyroelectric and electrocaloric properties of multilayered ferroelectric film structures.Materials and methods. The presented model is based on the Landau–Ginzburg–Devonshire model (LGD) considering elasticity equations and using electric induction as the order parameter.Results. The developed mathematical model based on LGD provides for a quantifiable description of dielectric, pyroelectric, and electrocaloric properties of layered ferroelectric structures. This model displays the effect of the thickness ratio of polycrystalline layers and grain size distribution on the dielectric properties of films.Conclusion. The developed quantitative model demonstrates the dependence of the thickness, grain size, and stacking order of ferroelectric layers on the dielectric constant and pyroelectric coefficient of multilayered polycrystalline film structures. The presented model can be applied when optimizing the parameters of multilayer structures with respect to their application area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信