挖掘消费者最具适应性产品的高效聚类算法

Yuyan Jiang, Quanhang Chen, Gouzheng Xing, Jie Li, Xiaoyan Pi
{"title":"挖掘消费者最具适应性产品的高效聚类算法","authors":"Yuyan Jiang, Quanhang Chen, Gouzheng Xing, Jie Li, Xiaoyan Pi","doi":"10.1109/WCSE.2009.353","DOIUrl":null,"url":null,"abstract":"Use clustering methods to discover the individual consumer’s most adaptive products, which can support to make better decisions of marketing service. First, oriented from the consumer’s transactional data that we will mine and targeted by finding some consumer’s most adaptive products, we present a simple and efficient cluster algorithm to put the most similar data into the same group. Then we can find the mined consumer’s most adaptive products from the cluster. Moreover, we propose a Boolean algorithm to improve the performance of the previous.","PeriodicalId":331155,"journal":{"name":"2009 WRI World Congress on Software Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Clustering Algorithm of Mining Consumers' Most Adaptive Products\",\"authors\":\"Yuyan Jiang, Quanhang Chen, Gouzheng Xing, Jie Li, Xiaoyan Pi\",\"doi\":\"10.1109/WCSE.2009.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use clustering methods to discover the individual consumer’s most adaptive products, which can support to make better decisions of marketing service. First, oriented from the consumer’s transactional data that we will mine and targeted by finding some consumer’s most adaptive products, we present a simple and efficient cluster algorithm to put the most similar data into the same group. Then we can find the mined consumer’s most adaptive products from the cluster. Moreover, we propose a Boolean algorithm to improve the performance of the previous.\",\"PeriodicalId\":331155,\"journal\":{\"name\":\"2009 WRI World Congress on Software Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 WRI World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2009.353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 WRI World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2009.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用聚类方法发现个体消费者最具适应性的产品,为更好的营销服务决策提供支持。首先,以挖掘的消费者交易数据为导向,以寻找消费者最具适应性的产品为目标,提出了一种简单高效的聚类算法,将最相似的数据放入同一组中。然后从聚类中找到被挖掘的消费者最具适应性的产品。此外,我们提出了一种布尔算法来改进先前算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Clustering Algorithm of Mining Consumers' Most Adaptive Products
Use clustering methods to discover the individual consumer’s most adaptive products, which can support to make better decisions of marketing service. First, oriented from the consumer’s transactional data that we will mine and targeted by finding some consumer’s most adaptive products, we present a simple and efficient cluster algorithm to put the most similar data into the same group. Then we can find the mined consumer’s most adaptive products from the cluster. Moreover, we propose a Boolean algorithm to improve the performance of the previous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信