基于决策树和cnn的微控制器两阶段人体活动识别

Francesco Daghero, D. J. Pagliari, M. Poncino
{"title":"基于决策树和cnn的微控制器两阶段人体活动识别","authors":"Francesco Daghero, D. J. Pagliari, M. Poncino","doi":"10.48550/arXiv.2206.07652","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (ID CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a “stand-alone” DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs\",\"authors\":\"Francesco Daghero, D. J. Pagliari, M. Poncino\",\"doi\":\"10.48550/arXiv.2206.07652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (ID CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a “stand-alone” DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.07652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人类活动识别(HAR)已经成为智能手表等嵌入式设备越来越受欢迎的任务。大多数用于超低功耗设备的HAR系统都基于经典的机器学习(ML)模型,而深度学习(DL)虽然达到了最先进的精度,但由于其高能耗而不太受欢迎,这对电池供电和资源受限的设备构成了重大挑战。在这项工作中,我们通过由决策树(DT)和一维卷积神经网络(ID CNN)组成的分层体系结构弥合了设备上HAR和DL之间的差距。这两个分类器以级联的方式在两个不同的子任务上运行:DT只分类最简单的活动,而CNN处理更复杂的活动。通过在最先进的数据集上进行实验,并针对单核RISC-V MCU,我们表明这种方法可以在等精度的“独立”DL架构下节省高达67.7%的能量。此外,两阶段系统要么引入了可以忽略不计的内存开销(最多200b),要么相反,减少了总内存占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs
Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (ID CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a “stand-alone” DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信