基于340 GHz氮化镓的高输出功率倍频器设计

Yiyuan Zheng, Kai Zhang, Kunpeng Dai, Y. Kong, Gang Lin, Tangsheng Chen
{"title":"基于340 GHz氮化镓的高输出功率倍频器设计","authors":"Yiyuan Zheng, Kai Zhang, Kunpeng Dai, Y. Kong, Gang Lin, Tangsheng Chen","doi":"10.1109/APCAP56600.2022.10069740","DOIUrl":null,"url":null,"abstract":"This paper presents a high-power 340 GHz frequency doubler based on GaN Schottky barrier diode (SBD) technology. The proposed frequency doubler consists of a pair of GaN SBDs chips, a quartz circuit, as well as the transition waveguides. To improve the power handling capabilities, a pair of GaN SBDs chips with six anodes in total is flip-chip mounted on the quartz circuit. The suspended microstrip line is employed in the circuit on quartz due to its low-attenuation characteristics at terahertz frequencies. To enhance the electrical performance of frequency doubler, low-loss transition structures are designed. The proposed frequency doubler shows a simulated output power of 300 mW with a conversion efficiency of 20% at 340 GHz.","PeriodicalId":197691,"journal":{"name":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a 340 GHz GaN-Based Frequency Doubler with High Output Power\",\"authors\":\"Yiyuan Zheng, Kai Zhang, Kunpeng Dai, Y. Kong, Gang Lin, Tangsheng Chen\",\"doi\":\"10.1109/APCAP56600.2022.10069740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-power 340 GHz frequency doubler based on GaN Schottky barrier diode (SBD) technology. The proposed frequency doubler consists of a pair of GaN SBDs chips, a quartz circuit, as well as the transition waveguides. To improve the power handling capabilities, a pair of GaN SBDs chips with six anodes in total is flip-chip mounted on the quartz circuit. The suspended microstrip line is employed in the circuit on quartz due to its low-attenuation characteristics at terahertz frequencies. To enhance the electrical performance of frequency doubler, low-loss transition structures are designed. The proposed frequency doubler shows a simulated output power of 300 mW with a conversion efficiency of 20% at 340 GHz.\",\"PeriodicalId\":197691,\"journal\":{\"name\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP56600.2022.10069740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP56600.2022.10069740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于GaN肖特基势垒二极管(SBD)技术的大功率340 GHz倍频器。提出的倍频器由一对GaN sdd芯片、石英电路以及过渡波导组成。为了提高功率处理能力,在石英电路上倒装了一对共6个阳极的GaN sdd芯片。悬浮微带线由于其在太赫兹频率下的低衰减特性而应用于石英电路中。为了提高倍频器的电气性能,设计了低损耗过渡结构。所提出的倍频器在340 GHz时的模拟输出功率为300 mW,转换效率为20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a 340 GHz GaN-Based Frequency Doubler with High Output Power
This paper presents a high-power 340 GHz frequency doubler based on GaN Schottky barrier diode (SBD) technology. The proposed frequency doubler consists of a pair of GaN SBDs chips, a quartz circuit, as well as the transition waveguides. To improve the power handling capabilities, a pair of GaN SBDs chips with six anodes in total is flip-chip mounted on the quartz circuit. The suspended microstrip line is employed in the circuit on quartz due to its low-attenuation characteristics at terahertz frequencies. To enhance the electrical performance of frequency doubler, low-loss transition structures are designed. The proposed frequency doubler shows a simulated output power of 300 mW with a conversion efficiency of 20% at 340 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信