飞蛾:片上网络的移动线程

Matthew Misler, Natalie D. Enright Jerger
{"title":"飞蛾:片上网络的移动线程","authors":"Matthew Misler, Natalie D. Enright Jerger","doi":"10.1145/1854273.1854342","DOIUrl":null,"url":null,"abstract":"As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moths: Mobile threads for On-Chip Networks\",\"authors\":\"Matthew Misler, Natalie D. Enright Jerger\",\"doi\":\"10.1145/1854273.1854342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着集成在单个芯片上的核心数量不断增加,通信有可能成为整体系统性能的严重瓶颈。线程共享的存在和数据在芯片上跨缓存库的分布可以导致长距离通信。长距离通信会产生影响性能的大量延迟;此外,当数据包在许多片上网络(NoC)链路和路由器之间交换时,这种通信消耗大量的动态功率。线程迁移可以减轻远程通信造成的问题。我们提出了Moths,这是一种有效的运行时算法,可以自动响应动态NoC流量模式,提供有益的线程迁移以减少总体流量和平均数据包延迟。在各种商业和科学基准测试中,Moths可将片上网络延迟最多减少28.4%(平均18.0%),流量最多减少24.9%(平均20.6%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moths: Mobile threads for On-Chip Networks
As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信