{"title":"飞蛾:片上网络的移动线程","authors":"Matthew Misler, Natalie D. Enright Jerger","doi":"10.1145/1854273.1854342","DOIUrl":null,"url":null,"abstract":"As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moths: Mobile threads for On-Chip Networks\",\"authors\":\"Matthew Misler, Natalie D. Enright Jerger\",\"doi\":\"10.1145/1854273.1854342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.