{"title":"对立粒子群优化算法及其在故障监测中的应用","authors":"Haiping Ma, Shengdong Lin, Baogen Jin","doi":"10.1109/CCPR.2009.5344006","DOIUrl":null,"url":null,"abstract":"In order to improve the real time of aircraft engine fault diagnosis, particle swarm optimization (PSO) is applied to select feature parameters of fault monitor. To tackle the slow nature of PSO, an oppositional particle swarm optimization (OPSO) algorithm is presented in this paper. Utilizing the acceleration performance of opposition-based learning (OBL), it employs OBL for population initialization and also for generation updating to accelerate the evolutionary process, improve the searching capability, and shorten the computing time. Also it has some merits including simpleness and easy implement. Through the benchmark functions and feature parameters selection problem, it demonstrates that the proposed algorithm is effective and superior.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Oppositional Particle Swarm Optimization Algorithm and Its Application to Fault Monitor\",\"authors\":\"Haiping Ma, Shengdong Lin, Baogen Jin\",\"doi\":\"10.1109/CCPR.2009.5344006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the real time of aircraft engine fault diagnosis, particle swarm optimization (PSO) is applied to select feature parameters of fault monitor. To tackle the slow nature of PSO, an oppositional particle swarm optimization (OPSO) algorithm is presented in this paper. Utilizing the acceleration performance of opposition-based learning (OBL), it employs OBL for population initialization and also for generation updating to accelerate the evolutionary process, improve the searching capability, and shorten the computing time. Also it has some merits including simpleness and easy implement. Through the benchmark functions and feature parameters selection problem, it demonstrates that the proposed algorithm is effective and superior.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oppositional Particle Swarm Optimization Algorithm and Its Application to Fault Monitor
In order to improve the real time of aircraft engine fault diagnosis, particle swarm optimization (PSO) is applied to select feature parameters of fault monitor. To tackle the slow nature of PSO, an oppositional particle swarm optimization (OPSO) algorithm is presented in this paper. Utilizing the acceleration performance of opposition-based learning (OBL), it employs OBL for population initialization and also for generation updating to accelerate the evolutionary process, improve the searching capability, and shorten the computing time. Also it has some merits including simpleness and easy implement. Through the benchmark functions and feature parameters selection problem, it demonstrates that the proposed algorithm is effective and superior.