基于自适应Pareto存档进化策略的多目标优化

Mihai Oltean, C. Grosan, A. Abraham, M. Köppen
{"title":"基于自适应Pareto存档进化策略的多目标优化","authors":"Mihai Oltean, C. Grosan, A. Abraham, M. Köppen","doi":"10.1109/ISDA.2005.69","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel adaptive representation for evolutionary multiobjective optimization for solving a stock modeling problem. The standard Pareto achieved evolution strategy (PAES) uses real or binary representation for encoding solutions. Adaptive Pareto archived evolution strategy (APAES) uses dynamic alphabets for encoding solutions. APAES is applied for modeling two popular stock indices involving 4 objective functions. Further, two bench mark test functions for multiobjective optimization are also used to illustrate the performance of the algorithm. Empirical results demonstrate APAES performs well when compared to the standard PAES,.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multiobjective optimization using adaptive Pareto archived evolution strategy\",\"authors\":\"Mihai Oltean, C. Grosan, A. Abraham, M. Köppen\",\"doi\":\"10.1109/ISDA.2005.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel adaptive representation for evolutionary multiobjective optimization for solving a stock modeling problem. The standard Pareto achieved evolution strategy (PAES) uses real or binary representation for encoding solutions. Adaptive Pareto archived evolution strategy (APAES) uses dynamic alphabets for encoding solutions. APAES is applied for modeling two popular stock indices involving 4 objective functions. Further, two bench mark test functions for multiobjective optimization are also used to illustrate the performance of the algorithm. Empirical results demonstrate APAES performs well when compared to the standard PAES,.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

针对某股票建模问题,提出了一种新的自适应进化多目标优化算法。标准的Pareto实现进化策略(PAES)使用实数或二进制表示来编码解决方案。自适应帕累托存档进化策略(APAES)使用动态字母编码解决方案。应用APAES对涉及4个目标函数的两种流行股票指数进行建模。此外,还使用两个多目标优化基准测试函数来说明算法的性能。实证结果表明,与标准PAES相比,APAES具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective optimization using adaptive Pareto archived evolution strategy
This paper proposes a novel adaptive representation for evolutionary multiobjective optimization for solving a stock modeling problem. The standard Pareto achieved evolution strategy (PAES) uses real or binary representation for encoding solutions. Adaptive Pareto archived evolution strategy (APAES) uses dynamic alphabets for encoding solutions. APAES is applied for modeling two popular stock indices involving 4 objective functions. Further, two bench mark test functions for multiobjective optimization are also used to illustrate the performance of the algorithm. Empirical results demonstrate APAES performs well when compared to the standard PAES,.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信