埃及电网负荷预测的数据挖掘

H.K. Mohamed, S. El-Debeiky, H. Mahmoud, K.M. El Destawy
{"title":"埃及电网负荷预测的数据挖掘","authors":"H.K. Mohamed, S. El-Debeiky, H. Mahmoud, K.M. El Destawy","doi":"10.1109/ICCES.2006.320491","DOIUrl":null,"url":null,"abstract":"The paper presents the design of a model for forecasting long-term electricity load. The model uses data mining techniques. The paper defines the load forecast and the summary of the most important factors affecting the load forecast in Egyptian electricity network. The steps needed for the knowledge discovery process is implemented to the time series data. Preprocessing the data in order to detect the missing value, odd value, outliers and normalize data. The output from the preprocessing step is fed into multiple regression or neural network to predict the coefficient parameters. Comparison between different cases using different techniques is indicated","PeriodicalId":261853,"journal":{"name":"2006 International Conference on Computer Engineering and Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Data Mining for Electrical Load Forecasting In Egyptian Electrical Network\",\"authors\":\"H.K. Mohamed, S. El-Debeiky, H. Mahmoud, K.M. El Destawy\",\"doi\":\"10.1109/ICCES.2006.320491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the design of a model for forecasting long-term electricity load. The model uses data mining techniques. The paper defines the load forecast and the summary of the most important factors affecting the load forecast in Egyptian electricity network. The steps needed for the knowledge discovery process is implemented to the time series data. Preprocessing the data in order to detect the missing value, odd value, outliers and normalize data. The output from the preprocessing step is fed into multiple regression or neural network to predict the coefficient parameters. Comparison between different cases using different techniques is indicated\",\"PeriodicalId\":261853,\"journal\":{\"name\":\"2006 International Conference on Computer Engineering and Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Computer Engineering and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2006.320491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Computer Engineering and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2006.320491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一个长期电力负荷预测模型的设计。该模型使用数据挖掘技术。本文对埃及电网负荷预测进行了定义,并总结了影响负荷预测的主要因素。将知识发现过程所需的步骤实现到时间序列数据中。对数据进行预处理,检测缺失值、奇值、异常值,并对数据进行规范化。将预处理后的输出输入到多元回归或神经网络中进行系数参数的预测。并对使用不同技术的不同病例进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining for Electrical Load Forecasting In Egyptian Electrical Network
The paper presents the design of a model for forecasting long-term electricity load. The model uses data mining techniques. The paper defines the load forecast and the summary of the most important factors affecting the load forecast in Egyptian electricity network. The steps needed for the knowledge discovery process is implemented to the time series data. Preprocessing the data in order to detect the missing value, odd value, outliers and normalize data. The output from the preprocessing step is fed into multiple regression or neural network to predict the coefficient parameters. Comparison between different cases using different techniques is indicated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信