{"title":"基于地面GPS的成都平原一次强降水事件综合分析","authors":"W. Hao, W. Yue, W. Yongqian","doi":"10.11648/J.EARTH.20160504.11","DOIUrl":null,"url":null,"abstract":"This study utilized the ground-based GPS water vapor monitoring network in the Chengdu Plain (102.9°–104.9°E, 30.1°–31.4°N), alongside radiosonde data and National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, to conduct a comprehensive analysis of a heavy precipitation event in this region in 2008. Correlations were found between the GPS precipitable water vapor (GPS-PWV) variations, the actual precipitation in the region, and the physical mechanism for the GPS-PWV variations. The research results indicate that the variation trends in precipitable water vapor had a significant correlation with actual precipitation. The precipitable water vapor increased and decreased significantly before and after the precipitation event, respectively. The residence time of precipitable water vapor at high levels was correlated with the duration of actual precipitation to some extent. The maximum value of the precipitation intensity lagged behind the precipitable water vapor peak, which brought forward precipitation to a certain degree. A strong ascending motion of the air was linked to increases in PWV, and the intensity of the ascending motion was strongly correlated with GPS-PWV. Different atmospheric thermodynamic conditions also had a notable effect on GPS-PWV variations.","PeriodicalId":350455,"journal":{"name":"Eearth","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comprehensive Analysis of a Heavy Precipitation Event in Chengdu Plain (China) Based on Ground-Based GPS\",\"authors\":\"W. Hao, W. Yue, W. Yongqian\",\"doi\":\"10.11648/J.EARTH.20160504.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilized the ground-based GPS water vapor monitoring network in the Chengdu Plain (102.9°–104.9°E, 30.1°–31.4°N), alongside radiosonde data and National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, to conduct a comprehensive analysis of a heavy precipitation event in this region in 2008. Correlations were found between the GPS precipitable water vapor (GPS-PWV) variations, the actual precipitation in the region, and the physical mechanism for the GPS-PWV variations. The research results indicate that the variation trends in precipitable water vapor had a significant correlation with actual precipitation. The precipitable water vapor increased and decreased significantly before and after the precipitation event, respectively. The residence time of precipitable water vapor at high levels was correlated with the duration of actual precipitation to some extent. The maximum value of the precipitation intensity lagged behind the precipitable water vapor peak, which brought forward precipitation to a certain degree. A strong ascending motion of the air was linked to increases in PWV, and the intensity of the ascending motion was strongly correlated with GPS-PWV. Different atmospheric thermodynamic conditions also had a notable effect on GPS-PWV variations.\",\"PeriodicalId\":350455,\"journal\":{\"name\":\"Eearth\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eearth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EARTH.20160504.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eearth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EARTH.20160504.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Analysis of a Heavy Precipitation Event in Chengdu Plain (China) Based on Ground-Based GPS
This study utilized the ground-based GPS water vapor monitoring network in the Chengdu Plain (102.9°–104.9°E, 30.1°–31.4°N), alongside radiosonde data and National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, to conduct a comprehensive analysis of a heavy precipitation event in this region in 2008. Correlations were found between the GPS precipitable water vapor (GPS-PWV) variations, the actual precipitation in the region, and the physical mechanism for the GPS-PWV variations. The research results indicate that the variation trends in precipitable water vapor had a significant correlation with actual precipitation. The precipitable water vapor increased and decreased significantly before and after the precipitation event, respectively. The residence time of precipitable water vapor at high levels was correlated with the duration of actual precipitation to some extent. The maximum value of the precipitation intensity lagged behind the precipitable water vapor peak, which brought forward precipitation to a certain degree. A strong ascending motion of the air was linked to increases in PWV, and the intensity of the ascending motion was strongly correlated with GPS-PWV. Different atmospheric thermodynamic conditions also had a notable effect on GPS-PWV variations.