WebShapes:具有3D形状的网络可视化

Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani
{"title":"WebShapes:具有3D形状的网络可视化","authors":"Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani","doi":"10.1145/3336191.3371867","DOIUrl":null,"url":null,"abstract":"Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WebShapes: Network Visualization with 3D Shapes\",\"authors\":\"Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani\",\"doi\":\"10.1145/3336191.3371867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络可视化在图分析中起着至关重要的作用,因为它不仅能呈现网络的全貌,而且有助于揭示网络的结构信息。最流行的网络可视化表示是节点链接图。然而,由于难以获得最佳的图布局,使用节点链接图可视化大型网络可能具有挑战性。为了应对这一挑战,网络表示的最新进展:网络形状,允许人们用嵌入的分布紧凑地表示网络及其子图。受到这项研究的启发,我们设计了一个网络平台WebShapes,使研究人员和从业者能够将他们的网络数据可视化为定制的3D形状(http://b.link/webshapes)。此外,我们提供了一个现实世界网络的案例研究,以探索网络形状对不同图采样、嵌入和拟合方法的敏感性,并展示了通过网络形状理解网络的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WebShapes: Network Visualization with 3D Shapes
Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信